27 research outputs found

    Does Notch play a tumor suppressor role across diverse squamous cell carcinomas?

    Get PDF
    The role of Notch pathway in tumorigenesis is highly variable. It can be tumor suppressive or pro-oncogenic, typically depending on the cellular context. Squamous cell carcinoma (SCC) is a cancer of the squamous cell, which can occur in diverse human tissues. SCCs are one of the most frequent human malignancies for which the pathologic mechanisms remain elusive. Recent genomic analysis of diverse SCCs identified marked levels of mutations in NOTCH1, implicating Notch signaling pathways in the pathogenesis of SCCs. In this review, evidences highlighting NOTCH's role in different types of SCCs are summarized. Moreover, based on accumulating structural information of the NOTCH receptor, the functional consequences of NOTCH1 gene mutations identified from diverse SCCs are analyzed, emphasizing loss of function of Notch in these cancers. Finally, we discuss the convergent view on an intriguing possibility that Notch may function as tumor suppressor in SCCs across different tissues. These mechanistic insights into Notch signaling pathways will help to guide the research of SCCs and development of therapeutic strategies for these cancers

    Distance-Based Fair Resource Allocation Algorithm for Device-to-Device Multicast Communication in SFN System

    No full text

    Generalized Block-Diagonalization Schemes for MIMO Relay Broadcasting Systems

    Get PDF
    We propose two generalized block-diagonalization (BD) schemes for multiple-input multiple-output (MIMO) relay broadcasting systems with no channel state information (CSI) at base station. We first introduce a generalized zero forcing (ZF) scheme that reduces the complexity of the traditional BD scheme. Then the optimal power loading matrix for the proposed scheme is analyzed and the closed-form solution is derived. Furthermore, an enhanced scheme is proposed by employing the minimum-mean-squared-error (MMSE) criterion. Simulation results show that the proposed generalized MMSE scheme outperforms the other schemes and the optimal power loading scheme improves the sum-rate performance efficiently

    The androgen receptor—lncRNASAT1-AKT-p15 axis mediates androgen-induced cellular senescence in prostate cancer cells

    No full text
    The bipolar androgen therapy (BAT) to treat prostate cancer (PCa) includes cycles of supraphysiological androgen levels (SAL) under androgen-deprivation therapy (ADT). We showed previously that SAL induces cellular senescence in androgen-sensitive PCa cells and in ex vivo-treated patient PCa tumor samples. Here, we analyzed the underlying molecular pathway and reveal that SAL induces cellular senescence in both, castration-sensitive (CSPC) LNCaP and castration-resistant PCa (CRPC) C4-2 cells through the cell cycle inhibitor p1
    corecore