2,641 research outputs found

    Broadband enhancement of light harvesting in luminescent solar concentrator

    Full text link
    Luminescent solar concentrator (LSC) can absorb large-area incident sunlight, then emit luminescence with high quantum efficiency, which finally be collected by a small photovoltaic (PV) system. The light-harvesting area of the PV system is much smaller than that of the LSC system, potentially improving the efficiency and reducing the cost of solar cells. Here, based on Fermi-golden rule, we present a theoretical description of the luminescent process in nanoscale LSCs where the conventional ray-optics model is no longer applicable. As an example calculated with this new model, we demonstrate that a slot waveguide consisting of a nanometer-sized low-index slot region sandwiched by two high-index regions provides a broadband enhancement of light harvesting by the luminescent centers in the slot region. This is because the slot waveguide can (1) greatly enhance the spontaneous emission due to the Purcell effect, (2) dramatically increase the effective absorption cross-section of luminescent centers, and (3) strongly improve the quantum efficiency of luminescent centers. It is found that about 80% solar photons can be ultimately converted to waveguide-coupled luminescent photons even for a low luminescent quantum efficiency of 0.5. This LSC is potential to construct a tandem structure which can absorb nearly full-spectrum solar photons, and also may be of special interest for building integrated nano-PV applications

    Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae

    Get PDF
    AbstractThe larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose–response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone

    (S)-2-[(2R,3S)-2-Ammonio-3-hydr­oxy-3-(4-nitro­phen­yl)propanamido]-4-methyl­penta­noate monohydrate

    Get PDF
    The structure of the title compound, C15H21N3O6·H2O, is of inter­est with respect to assumed anti­cancer activity. The title mol­ecules are linked through inter­molecular O—H⋯O hydrogen-bonded chains along the a axis. These chains are connected by inter­molecular N—H⋯O hydrogen bonds through the crystallographic screw axis along [010], forming layers, which are stabilized by other N—H⋯O bonds with water O atoms as acceptors and O—H⋯O bonds with water H atoms as donors. The H atoms of the protonated amino cation are also involved in inter­molecular N—H⋯O bonding inter­actions

    Characterization of the early fiber development gene, Ligon-lintless 1 (Li1), using microarray

    Get PDF
    AbstractCotton fiber length is a key factor in determining fiber quality in the textile industry throughout the world. Understanding the molecular basis of fiber elongation would allow for improvement of fiber length. Ligon-lintless 1 (Li1) is a monogenic dominant mutation that results in short fibers. This mutant provides an excellent model system to study the molecular mechanisms of cotton fiber elongation. Microarray technology and quantitative real time PCR (qRT-PCR) were used to evaluate differentially expressed genes (DEGs) in the Ligon-lintless 1 (Li1) mutant compared to the wild-type. Although the results showed only a few differentially expressed genes at −1, 3 and 7days post anthesis (DPA); at 5 DPA, there were 1915 DEGs, including 984 up-regulated genes and 931 down-regulated genes. The critical stage for early termination of Li1 fiber elongation was 5 DPA, as there were the most differentially expressed genes in this sample. The transcription factors and other proteins identified might contribute to understanding the molecular basis of early fiber elongation. Gene ontology analysis identified some key GO terms that impact the regulation of fiber development during early elongation. These results provide some fundamental information about the TFs that might provide new insight into understanding the molecular mechanisms governing cotton fiber development

    An Opposite-Bending-and-Extension Soft Robotic Manipulator for Delicate Grasping in Shallow Water

    Get PDF
    Collecting seafood animals (such as sea cucumbers, sea echini, scallops, etc.) cultivated in shallow water (water depth: ~30 m) is a profitable and an emerging field that requires robotics for replacing human divers. Soft robotics have several promising features (e.g., safe contact with the objects, lightweight, etc.) for performing such a task. In this paper, we implement a soft manipulator with an opposite-bending-and-extension structure. A simple and rapid inverse kinematics method is proposed to control the spatial location and trajectory of the underwater soft manipulator's end effector. We introduce the actuation hardware of the prototype, and then characterize the trajectory and workspace. We find that the prototype can well track fundamental trajectories such as a line and an arc. Finally, we construct a small underwater robot and demonstrate that the underwater soft manipulator successfully collects multiple irregular shaped seafood animals of different sizes and stiffness at the bottom of the natural oceanic environment (water depth: ~10 m)
    corecore