10,608 research outputs found

    Extended Holographic dark energy

    Full text link
    The idea of relating the infrared and ultraviolet cutoffs is applied to Brans-Dicke theory of gravitation. We find that extended holographic dark energy from the Hubble scale or the particle horizon as the infrared cutoff will not give accelerating expansion. The dynamical cosmological constant with the event horizon as the infrared cutoff is a viable dark energy model.Comment: one reference is corrected, 3 pages, no figure,V3: minor correction

    Adsorption, Segregation and Magnetization of a Single Mn Adatom on the GaAs (110) Surface

    Full text link
    Density functional calculations with a large unit cell have been conducted to investigate adsorption, segregation and magnetization of Mn monomer on GaAs(110). The Mn adatom is rather mobile along the trench on GaAs(110), with an energy barrier of 0.56 eV. The energy barrier for segregation across the trenches is nevertheless very high, 1.67 eV. The plots of density of states display a wide gap in the majority spin channel, but show plenty of metal-induced gap states in the minority spin channel. The Mn atoms might be invisibl in scanning tunneling microscope (STM) images taken with small biases, due to the directional p-d hybridization. For example, one will more likely see two bright spots on Mn/GaAs(110), despite the fact that there is only one Mn adatom in the system

    A 1.3 cm line survey toward IRC +10216

    Full text link
    IRC +10216 is the prototypical carbon star exhibiting an extended molecular circumstellar envelope. Its spectral properties are therefore the template for an entire class of objects. The main goal is to systematically study the λ\lambda \sim1.3 cm spectral line characteristics of IRC +10216. We carried out a spectral line survey with the Effelsberg-100 m telescope toward IRC +10216. It covers the frequency range between 17.8 GHz and 26.3 GHz (K-band). In the circumstellar shell of IRC +10216, we find 78 spectral lines, among which 12 remain unidentified. The identified lines are assigned to 18 different molecules and radicals. A total of 23 lines from species known to exist in this envelope are detected for the first time outside the Solar System and there are additional 20 lines first detected in IRC +10216. The potential orgin of "U" lines is also discussed. Assuming local thermodynamic equilibrium (LTE), we then determine rotational temperatures and column densities of 17 detected molecules. Molecular abundances relative to H2_{2} are also estimated. A non-LTE analysis of NH3_{3} shows that the bulk of its emission arises from the inner envelope with a kinetic temperature of 70±\pm20 K. Evidence for NH3_{3} emitting gas with higher kinetic temperature is also obtained, and potential abundance differences between various 13^{13}C-bearing isotopologues of HC5_{5}N are evaluated. Overall, the isotopic 12^{12}C/13^{13}C ratio is estimated to be 49±\pm9. Finally, a comparison of detected molecules in the λ\lambda \sim1.3 cm range with the dark cloud TMC-1 indicates that silicate-bearing molecules are more predominant in IRC +10216.Comment: 32 pages, 9 figures, Accepted by A&

    Limits from Weak Gravity Conjecture on Dark Energy Models

    Full text link
    The weak gravity conjecture has been proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of two types of dark energy models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland, whereas the aa power-low decay model of the variable cosmological constant can be viable but the parameters are tightly constrained by the conjecture.Comment: Revtex4, 8 pages, 5 figures; References, minor corrections in content, and acknowledgement adde

    SiS in the circumstellar envelope of IRC +10126: maser and quasi-thermal emission

    Full text link
    We present new Effelsberg-100 m, ATCA, and VLA observations of rotational SiS transitions in the circumstellar envelope (CSE) of IRC +10216. Thanks to the high angular resolution achieved by the ATCA observations, we unambiguously confirm that the molecule's J=1-0 transition exhibits maser action in this CSE, as first suggested more than thirty years ago. The maser emission's radial velocity peaking at a local standard of rest velocity of -39.862±\pm0.065 km/s indicates that it arises from an almost fully accelerated shell. Monitoring observations show time variability of the SiS (1-0) maser. The two lowest-JJ SiS quasi-thermal emission lines trace a much more extended emitting region than previous high-J SiS observations. Their distributions show that the SiS quasi-thermal emission consists of two components: one is very compact (radius<1.5", corresponding to <3×1015\times 10^{15} cm), and the other extends out to a radius >11". An incomplete shell-like structure is found in the north-east, which is indicative of existing SiS shells. Clumpy structures are also revealed in this CSE. The gain of the SiS (1-0) maser (optical depths of about -5 at the blue-shifted side and, assuming inversion throughout the entire line's velocity range, about -2 at the red-shifted side) suggests that it is unsaturated. The SiS (1-0) maser can be explained in terms of ro-vibrational excitation caused by infrared pumping, and we propose that infrared continuum emission is the main pumping source.Comment: Accepted for publication in ApJ. A high-resolution version can be found at https://gongyan2444.github.io/pdf/cw-leo-sis.pdf 3D movies of SiS cubes can be found at https://gongyan2444.github.io/movie/sis10-3d.avi and https://gongyan2444.github.io/movie/sis21-3d.av

    Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 µm wavelength region

    Get PDF
    The energy and excitation density dependence of the carrier dynamics in self-assembled InAs/InP quantum dots sQDsd, emitting in the 1.55 µm wavelength region, is investigated by means of time-resolved pump-probe differential reflection spectroscopy at room temperature. We observe ultrafast carrier capture and subsequential carrier relaxation into the QD ground state within 2.5 ps. The carrier lifetime in the QDs strongly depends on the QD optical transition energy within the QD ensemble as well as the carrier density, and ranges from 560 up to 2600 ps

    On curvature coupling and quintessence fine-tuning

    Full text link
    We discuss the phenomenological model in which the potential energy of the quintessence field depends linearly on the energy density of the spatial curvature. We find that the pressure of the scalar field takes a different form when the potential of the scalar field also depends on the scale factor and the energy momentum tensor of the scalar field can be expressed as the form of a perfect fluid. A general coupling was proposed to explain the current accelerating expansion of the Universe and solve the fine-tuning problem.Comment: 5 pages, 1 figure, v2: correct the comment on astro-ph/0509177, v3: significant changes are made to better present the paper;v4: use epl style, add new contents, conclusion remains, accepted for publication by Europhys. Let
    corecore