229 research outputs found

    A Visual Representation-guided Framework with Global Affinity for Weakly Supervised Salient Object Detection

    Full text link
    Fully supervised salient object detection (SOD) methods have made considerable progress in performance, yet these models rely heavily on expensive pixel-wise labels. Recently, to achieve a trade-off between labeling burden and performance, scribble-based SOD methods have attracted increasing attention. Previous scribble-based models directly implement the SOD task only based on SOD training data with limited information, it is extremely difficult for them to understand the image and further achieve a superior SOD task. In this paper, we propose a simple yet effective framework guided by general visual representations with rich contextual semantic knowledge for scribble-based SOD. These general visual representations are generated by self-supervised learning based on large-scale unlabeled datasets. Our framework consists of a task-related encoder, a general visual module, and an information integration module to efficiently combine the general visual representations with task-related features to perform the SOD task based on understanding the contextual connections of images. Meanwhile, we propose a novel global semantic affinity loss to guide the model to perceive the global structure of the salient objects. Experimental results on five public benchmark datasets demonstrate that our method, which only utilizes scribble annotations without introducing any extra label, outperforms the state-of-the-art weakly supervised SOD methods. Specifically, it outperforms the previous best scribble-based method on all datasets with an average gain of 5.5% for max f-measure, 5.8% for mean f-measure, 24% for MAE, and 3.1% for E-measure. Moreover, our method achieves comparable or even superior performance to the state-of-the-art fully supervised models

    Towards Runtime Customizable Trusted Execution Environment on FPGA-SoC

    Full text link
    Processing sensitive data and deploying well-designed Intellectual Property (IP) cores on remote Field Programmable Gate Array (FPGA) are prone to private data leakage and IP theft. One effective solution is constructing Trusted Execution Environment (TEE) on FPGA-SoCs (FPGA System on Chips). Researchers have integrated this type TEE with Trusted Platform Module (TPM)-based trusted boot, denoted as FPGA-SoC tbTEE. But there is no effort on secure and trusted runtime customization of FPGA-SoC TEE. This paper extends FPGA-SoC tbTEE to build Runtime Customizable TEE (RCTEE) on FPGA-SoC by additive three major components (our work): 1) CrloadIP, which can load an IP core at runtime such that RCTEE can be adjusted dynamically and securely; 2) CexecIP, which can not only execute an IP core without modifying the operating system of FPGA-SoC TEE, but also prevent insider attacks from executing IPs deployed in RCTEE; 3) CremoAT, which can provide the newly measured RCTEE state and establish a secure and trusted communication path between remote verifiers and RCTEE. We conduct a security analysis of RCTEE and its performance evaluation on Xilinx Zynq UltraScale+ XCZU15EG 2FFVB1156 MPSoC

    Observation of pi/2 modes in an acoustic Floquet system

    Full text link
    Topological phases of matter have remained an active area of research in the last few decades. Periodic driving is known to be a powerful tool for enriching such exotic phases, which leads to various phenomena with no static analogs. One such phenomenon is the emergence of the elusive pi/2pi/2 modes, i.e., a type of topological boundary state pinned at a quarter of the driving frequency. The latter may lead to the formation of Floquet parafermions in the presence of interaction, which is known to support more computational power than Majorana particles. In this work, we experimentally verify the signature of π/2\pi/2 modes in an acoustic waveguide array, which is designed to simulate a square-root periodically driven Su-Schrieffer-Heeger model. This is accomplished by confirming the 4T4T-periodicity (TT being the driving period) profile of an initial-boundary excitation, which we also show theoretically to be the smoking gun evidence of π/2\pi/2 modes. Our findings are expected to motivate further studies of π/2\pi/2 modes in quantum systems for potential technological applications.Comment: 6 pages, 3 figure. Comments are welcom

    Integrated mRNA Sequence Optimization Using Deep Learning

    Get PDF
    The coronavirus disease of 2019 pandemic has catalyzed the rapid development of mRNA vaccines, whereas, how to optimize the mRNA sequence of exogenous gene such as severe acute respiratory syndrome coronavirus 2 spike to fit human cells remains a critical challenge. A new algorithm, iDRO (integrated deep-learning-based mRNA optimization), is developed to optimize multiple components of mRNA sequences based on given amino acid sequences of target protein. Considering the biological constraints, we divided iDRO into two steps: open reading frame (ORF) optimization and 5\u27 untranslated region (UTR) and 3\u27UTR generation. In ORF optimization, BiLSTM-CRF (bidirectional long-short-term memory with conditional random field) is employed to determine the codon for each amino acid. In UTR generation, RNA-Bart (bidirectional auto-regressive transformer) is proposed to output the corresponding UTR. The results show that the optimized sequences of exogenous genes acquired the pattern of human endogenous gene sequence. In experimental validation, the mRNA sequence optimized by our method, compared with conventional method, shows higher protein expression. To the best of our knowledge, this is the first study by introducing deep-learning methods to integrated mRNA sequence optimization, and these results may contribute to the development of mRNA therapeutics

    Nonconvex optimization for optimum retrieval of the transmission matrix of a multimode fiber

    Full text link
    Transmission matrix (TM) allows light control through complex media such as multimode fibers (MMFs), gaining great attention in areas like biophotonics over the past decade. The measurement of a complex-valued TM is highly desired as it supports full modulation of the light field, yet demanding as the holographic setup is usually entailed. Efforts have been taken to retrieve a TM directly from intensity measurements with several representative phase retrieval algorithms, which still see limitations like slow or suboptimum recovery, especially under noisy environment. Here, a modified non-convex optimization approach is proposed. Through numerical evaluations, it shows that the nonconvex method offers an optimum efficiency of focusing with less running time or sampling rate. The comparative test under different signal-to-noise levels further indicates its improved robustness for TM retrieval. Experimentally, the optimum retrieval of the TM of a MMF is collectively validated by multiple groups of single-spot and multi-spot focusing demonstrations. Focus scanning on the working plane of the MMF is also conducted where our method achieves 93.6% efficiency of the gold standard holography method when the sampling rate is 8. Based on the recovered TM, image transmission through the MMF with high fidelity can be realized via another phase retrieval. Thanks to parallel operation and GPU acceleration, the nonconvex approach can retrieve an 8685×\times1024 TM (sampling rate=8) with 42.3 s on a regular computer. In brief, the proposed method provides optimum efficiency and fast implementation for TM retrieval, which will facilitate wide applications in deep-tissue optical imaging, manipulation and treatment

    Identification and analysis of the secretome of plant pathogenic fungi reveals lifestyle adaptation

    Get PDF
    The secretory proteome plays an important role in the pathogenesis of phytopathogenic fungi. However, the relationship between the large-scale secretome of phytopathogenic fungi and their lifestyle is not fully understood. In the present study, the secretomes of 150 plant pathogenic fungi were predicted and the characteristics associated with different lifestyles were investigated. In total, 94,974 secreted proteins (SPs) were predicted from these fungi. The number of the SPs ranged from 64 to 1,662. Among these fungi, hemibiotrophic fungi had the highest number (average of 970) and proportion (7.1%) of SPs. Functional annotation showed that hemibiotrophic and necrotroph fungi, differ from biotrophic and symbiotic fungi, contained much more carbohydrate enzymes, especially polysaccharide lyases and carbohydrate esterases. Furthermore, the core and lifestyle-specific SPs orthogroups were identified. Twenty-seven core orthogroups contained 16% of the total SPs and their motif function annotation was represented by serine carboxypeptidase, carboxylesterase and asparaginase. In contrast, 97 lifestyle-specific orthogroups contained only 1% of the total SPs, with diverse functions such as PAN_AP in hemibiotroph-specific and flavin monooxygenases in necrotroph-specific. Moreover, obligate biotrophic fungi had the largest number of effectors (average of 150), followed by hemibiotrophic fungi (average of 120). Among these effectors, 4,155 had known functional annotation and pectin lyase had the highest proportion in the functionally annotated effectors. In addition, 32 sets of RNA-Seq data on pathogen-host interactions were collected and the expression levels of SPs were higher than that of non-SPs, and the expression level of effector genes was higher in biotrophic and hemibiotrophic fungi than in necrotrophic fungi, while secretase genes were highly expressed in necrotrophic fungi. Finally, the secretory activity of five predicted SPs from Setosphearia turcica was experimentally verified. In conclusion, our results provide a foundation for the study of pathogen-host interaction and help us to understand the fungal lifestyle adaptation
    • …
    corecore