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Abstract

The coronavirus disease of 2019 pandemic has catalyzed the rapid development of mRNA vaccines, whereas, how to optimize the
mRNA sequence of exogenous gene such as severe acute respiratory syndrome coronavirus 2 spike to fit human cells remains a critical
challenge. A new algorithm, iDRO (integrated deep-learning-based mRNA optimization), is developed to optimize multiple components
of mRNA sequences based on given amino acid sequences of target protein. Considering the biological constraints, we divided iDRO
into two steps: open reading frame (ORF) optimization and 5′ untranslated region (UTR) and 3′UTR generation. In ORF optimization,
BiLSTM-CRF (bidirectional long-short-term memory with conditional random field) is employed to determine the codon for each amino
acid. In UTR generation, RNA-Bart (bidirectional auto-regressive transformer) is proposed to output the corresponding UTR. The results
show that the optimized sequences of exogenous genes acquired the pattern of human endogenous gene sequence. In experimental
validation, the mRNA sequence optimized by our method, compared with conventional method, shows higher protein expression. To
the best of our knowledge, this is the first study by introducing deep-learning methods to integrated mRNA sequence optimization, and
these results may contribute to the development of mRNA therapeutics.
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Introduction
The coronavirus disease of 2019 (COVID-19) pandemic has pre-
sented new challenges to individuals worldwide. Various vaccine
platforms have been developed and the mRNA vaccine precedes
other conventional vaccine platforms because of high potency,
safe administration, rapid development potentials and cost-
effective manufacturing. However, the variants continuously arise
global wide and are challenging the efficacy of current vaccines.
According to CDC’s report, during the Delta variant period (June–
July 2021), adjusted vaccine effectiveness (VE) against infection
among those fully vaccinated was 52.4% for Pfizer-BioNTech, and
50.6% for Moderna. (Data show at https://www.cdc.gov/mmwr/
volumes/70/wr/mm7034e3.html.) More seriously, the omicron
variant was first detected in southern Africa in late November
2021 and labeled a ‘variant of concern’ by the World Health
Organization on 26th November 2021. According to a recent study,
traditional dosing regimens of COVID-19 vaccines available in the
United States do not produce antibodies capable of recognizing

and neutralizing the Omicron variant, and an additional ‘booster’
dose of Moderna or Pfizer-BioNTech mRNA-based vaccine is
needed to provide immunity against the Omicron variant of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2; [1]). The
global data show the coronavirus pandemic is far away from over
and thus, more variants are expectable and some of them may
escape the immune response produced after vaccination. It raises
concerns that how to keep the efficacy of existing mRNA vaccines
on variants.

The fundamental structure of mRNA vaccine is lipid nanopar-
ticle (LNP) encapsulated mRNA chain, which is composed of an
open reading frame (ORF) region that encodes the protein, flanked
by five-prime (5′) and three-prime (3′) untranslated region (UTR),
and further stabilized by 7-methylgaunosine (m7G) 5′ cap and
3′ poly (A) tails, respectively (Figure 1A). The process of mRNA
vaccine development is illustrated in Figure 1B.

The immune responses elicited by COVID-19 vaccine are
depicted in the schematic Figure 1C. Briefly, upon intramuscular
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Figure 1. Schematic of immune responses elicited by COVID-19 vaccine. (A) Structure of mRNA. (B) Schematic illustration of mRNA vaccine production.
(C) Schematic representation of mechanism of mRNA vaccines.

vaccination (Figure 1C—step 1), mRNA encapsulated in LNP are
taken up by antigen-presenting cells (APCs), such as dendritic
cells (DCs). mRNA is directly translated into polypeptides which
are processed by the proteasome system, leading to peptide
presentation onto MHC-I on the cell surface (similarly as during
a viral infection), and post-translationally modified to be folded
into the protein which, depending on the mRNA design, can either
be membrane-anchored or be secreted. Peptide presentation onto
MHC-II may occur on APCs after protein uptake of extracellular
proteins or of cell debris containing protein (Figure 1C—step 2).
These APCs then traffic to the lymph nodes (Figure 1C—step
3) where they are able to prime CD4 and CD8 T lymphocytes
(Figure 1C—steps 4 and 5). Antigen-primed CD4 T cells can
differentiate into T follicular helper (Tfh) cells, which help to
activate B cells in germinal center (GC) and production of antibody
with high affinity (Figure 1C—step 6) [2, 3].

As the COVID-19 mRNA vaccine encoding spike protein needs
to be translated to protein in human cells to function, increased
translation efficiency will yield more target antigen protein and
therefore elicit stronger immune protection, and this is even
more critical for virus variants. According to CureVac’s report
[4], the COVID-19 mRNA vaccine from CureVac was only 47%
effective in a late-stage trial. One possible reason is CureVac
used the dose of 12 μg, a lower dose than Moderna and Pfizer-
BioNTech vaccines, to balance safety and efficacy. However, lower
dose of CureVac’s vaccine translated into fewer antigens and
elicited weaker immune response insufficient to protect recipient
from SARS-CoV-2 variants. Thus, how to improve the translation
efficiency of mRNA vaccine to yield enough antigens at given dose
mRNA is critically important.

It is acknowledged that various organisms have their own
pattern of mRNA sequence and this pattern has complex effect

on translation efficiency. For example, in each organism there
is a preference for certain codons (biased codons) over others
(rare codons); therefore, synonymous codons occur with different
frequencies, a phenomenon termed codon usage bias, which is
observed across species [5]. The codon usage directly influences
the translation efficiency and mRNA stability [6]. Meanwhile,
the sequence and length of UTR also varies among different
organism [7]. UTR can impact mRNA degradation rate and
translation efficiency through interacting with RNA binding
proteins [8]. Therefore, in mRNA-based heterologous expression
systems, such as expressing virus antigen in human cells, how
to optimize and convert the mRNA sequence pattern of virus
gene to human is important [9]. Some direct and straightforward
optimization strategies have been widely used but they all have
shortcomings. For instance, directly replacing rare codons with
biased codons will results in an imbalance of different tRNAs
and eventually leads to the depletion of tRNA and termination
of translation [10]. Use of the globin UTR represents a logical
approach to improve mRNA stability as the globin mRNAs
produce large amount of protein and have long half-life [11].
However, as the biology of the target ORF and the cellular
context may influence overall efficacy of mRNA, using a single
universal UTR to improve protein production from exogenously
administered mRNA across different cells types and tissues
may not be feasible [12]. Further methods have been reported
to optimize codon usage [13, 14], 5′UTR [15, 16], 3′UTR [17],
combination of 5′UTR/3′UTR [12]. Nevertheless, as the multiple
components (5′UTR, codon, 3′UTR) work in coordination during
translation, a gene specific integrated optimization method is
needed.

To overcome the aforementioned issues, this paper represents
a full-length mRNA optimizing algorithm, iDRO (integrated
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Figure 2. Integrated deep-learning-based mRNA optimization (iDRO) pipeline and model details. (A) iDRO pipeline. iDRO has two main stages (gray
blocks), ORF optimization and UTR generation. (B) Network structure of iDRO. Arrows shows the information flow. BiLSTM and RNA-Bart are detailed in
sub-figures C and D. (C) Structure of BiLSTM-CRF. (D) Structure of RNA-Bart.

deep-learning-based mRNA optimization; Figure 2A). Based on
the mRNA structure, our algorithm consists of two parts: ORF
optimization and UTR generation. For ORF optimization, we
employed BiLSTM-CRF (bidirectional long-short-term memory
with conditional random field; [18]) to construct codon. Inspired
by mBART (multilingual bidirectional and auto-regressive
transformers; [2, 19]) in Natural Language Processing (NLP)
research, we developed RNA-Bart for UTR generation. Together,
we developed a novel pipeline for optimization of full mRNA
sequence (including 5′UTR, ORF, 3′UTR) via deep-learning method.
The experimental validation indicates that our pipeline can
generate mRNA sequence with high translation efficiency. As a
brief summary, the contribution of this paper includes: (i) This
is the first work to optimize full-length mRNA sequence for
human including 5′UTR, ORF and 3′UTR; (ii) We developed a novel
RNA-Bart, a Transformer-based model, to generate UTRs that are
similar to human genome and increase translation efficiency and

(iii) The biological experiments showed that the optimized mRNA
sequence generated by iDRO reaches higher protein expression
than conventional optimization method, i.e. incorporating the
UTRs of human globin.

The rest of paper is structured as follows. In section ‘Materials
and methods’, we introduced the datasets, ‘Biological materials
and biological methods’ used in this work. In section ‘Proposed
computational approach’, we described the proposed model iDRO
in details. In section ‘Results’, we showed the performance of the
proposed model, minimum free energy (mfe) analysis, secondary
structural analysis and experiment validation results. In section
‘Discussion’, we discussed the results and showed how to use
our method to generate mRNA sequence for SARS-CoV-2 variants
and the comparison with Pfizer-BioNTech vaccine BNT162b2 and
Moderna vaccine mRNA-1273. Finally, we concluded this work and
discussed the future directions in section ‘Conclusion and future
work’.
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Material and methods
Design and build high expression efficiency
dataset
Based on natural facts, a basic and reasonable assumption is
proposed [12, 20]: we assumed human gene is the most efficient
sequence for translation in human cell, which can be considered
as the ground truth. This assumption is supported by the facts:
(i) different species have consistent and characteristic codon bias,
and a conventional approach to improve exogenous gene expres-
sion is to substitute rare codons by frequent codon in CDS accord-
ing to the genomic codon usage in a host organism [21, 22], (ii)
the UTR of mRNA are obviously different among species [23, 24],
and using 5′UTR and/or 3′UTR from human gene is standard
approach to enhance translation efficiency of exogenous mRNA
(e.g. COVID-19 vaccine from Moderna and Pfizer-BioNTech; [25]).
Previous study has shown that deep learning can learn the codon
rules in Escherichia coli, and then fulfil high protein expression with
optimized codons [13]. In this study, we extended these results
and assumed that these rules exist not only in E. coli but also in
humans, not only in ORF but also in UTR.

To generate training dataset that covers high translation
efficiency sequence, we used the NCBI human gene dataset
and UCSC.hg19.knownGene [26]. UCSC.hg19.knownGene contains
63 691 samples, and each sample consists of 5′UTR, ORF and
3′UTR sequence. We chose the data whose UTR length was 50–
500 bp and ORF length less than 2500 bp and obtained 17 029
training data. We also translated ORFs to amino acid sequences
for ORF optimization training. In ORF optimization, the amino
acid is the input, and the corresponding ORF is the ground truth.
In UTR generation, ORF is the input, and the corresponding UTR
is the ground truth.

Biological materials and methods
Chemicals and reagents
All chemicals and reagents were purchased from Thermo Fisher
Scientifc, Inc. (Waltham, MA) unless otherwise specified.

Cell line
HEK-293 cells were purchased from ATCC and cultured in DMEM
medium supplemented with 10% fetal bovine serum, 100-U/ml
penicillin and 100-mg/ml streptomycin.

Plasmid construction
The Kozak sequence (5′-GCCACC-3′) was inserted before the start
codon (ATG) of the optimized EGFP gene, and they together were
flanked by 5′UTR and 3′UTR. In this study, best preprocessing
iDRO sequence, only tokenized iDRO sequence, and human alpha
globin 5′UTR/3′UTR [27] were used. The sequence necessary for
the in vitro transcription of mRNA, including T7 promoter, 5′UTR,
Kozak sequence, EGFP coding sequence and 3′UTR, were cloned
into pUC57 vector by GeneScript (Piscataway, NJ) and transformed
into DH5α competent E. coli by chemical transformation. The
transformed E. coli was allowed to grow on LB broth plate with agar
and 100 μg/ml−1 ampicillin. Individual colonies were inoculated
and outgrown in LB broth liquid medium containing 100 μg/ml
ampicillin overnight with vigorous shaking at 250 rpm. Plasmids
were extracted using GeneJET Plasmid Miniprep kit. Concentra-
tion was measured on a NanoDrop 2000 Spectrophotometer. The
region of interest in the plasmid from the T7 promoter to 3′ UTR
was confirmed by Sanger Sequencing.

In vitro transcription of mRNA
The templates for in vitro transcription were generated by PCR
amplification of the corresponding plasmids using a forward
primer and a reverse primer containing 100T at the 5′ end. The
PCR products were purified using GeneJET PCR Purification Kit.
The in vitro transcription of mRNA was performed using mMES-
SAGE mMACHINE T7 ULTRA Transcription Kit and generated
mRNA was purified using MEGAclear Transcription Clean-Up Kit.
After measurement of concentration by a NanoDrop 2000 Spec-
trophotometer, all mRNAs were diluted to 50 ng/μl, aliquoted, and
stored at −80◦C for future use.

Transfection
Lipofectamine 3000 (Invitrogen, Carlsbad, CA) was used as the
transfection reagent. Briefly, on day 0, HEK-293 cells were seeded
at a density of 3 × 105 cells/well on 6-well plates at volumes of
3 ml with DMEM medium supplemented with 10% fetal bovine
serum, 100 U/ml penicillin and 100 mg/ml streptomycin. Cells
were incubated at 37◦C in the presence of 5% CO2 until the
confluence reached 80%. On day 1, 3 μg of various mRNA was
diluted into 125 μl Opti-MEM. Meanwhile, 9 μl of Lipofectamine
3000 was diluted into 125 μl of Opti-MEM. Then the diluted mRNA
was added to the diluted Lipofectamine 3000. The mixture was
incubated for 15 min prior to addition to the cells. Each of mRNA
was tested in triplicate.

Flow cytometry
The transfected cells were analyzed by flow cytometry (BD Bio-
sciences, San Jose, CA). After 24 h, the cells were digested with
trypsin, washed twice with phosphate-buffered saline (PBS) and
finally, resuspended in 1 ml of PBS. Ten thousand cells were
collected from each group, and the green fluorescence signal was
captured through a fluorescein isothiocyanate (FITC) channel.

Proposed computational approach iDRO
iDRO structure
The iDRO structure is shown in Figure 2B. The input is amino
acid sequence, which is the candidate protein sequence (e.g. spike
protein in SARS-CoV-2), and the output is the optimized mRNA
sequence for human. There are two main components: BiLSTM-
CRF and RNA-Bart. BiLSTM-CRF consists of three types of deep-
learning layer (word2vec layer, BiLSTM layer and CRF layer), and
aims to find the best codon arrangement for amino acid sequence.
RNA-Bart is a transformer-based pretraining model, which con-
tains tokenize layer, transformer layer and softmax layer. The
amino acids are firstly input to BiLSTM-CRF to get the optimized
ORF sequence. Then, the ORF is split into tokens and fed into RNA-
Bart to generate 5′UTR and 3′UTR.

The hyperparameter setup is followed. As for BiLSTM-CRF, the
hidden layer dimension was 200; the learning rate was 0.003; the
batch size was 32 and the dropout rate was 0.5. As for RNA-Bart.
The learning rate was 0.00005; layer number was 8; hidden layer
dimension was 512. Next, we will describe the BiLSTM-CRF and
RNA-Bart in details.

BiLSTM-CRF
Based on the injective relation between codon and amino acid,
ORF optimization can be regarded as a NER (name entity recog-
nition) task in NLP. The goal of NER is to recognize the category
(people, location, etc.) for each word. In this task, we recognize
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the best codon for each amino acid. Here, we employ the BiLSTM-
CRF network to optimize ORF. BiLSTM uses the context informa-
tion of the input amino acid to predict the codon, and the CRF
layer adjusts the codon choice to increase accuracy. Therefore,
BiLSTM-CRF is suitable for the ORF optimization task because of
the high accuracy of BiLSTM-CRF. The structure of BiLSTM-CRF is
shown in Figure 2C. Each amino acid is first fed into a word2vec
layer [28], which is pretrained with all amino acid sequences we
collected. At this step, each amino acid is encoded to a word vector
that carries some context information. We denote the input word
vector as x; the timestamp as t; the hidden feature as h and the
output as y. The value for hidden layer and output is computed
as follows:

h(t) = f
(
Wx(t) + V

(
h (t − 1)

))
(1)

y(t) = g
(
Uh(t)

)
(2)

where, W, V and U are learnable parameters. f (z) and g(z)
are activation function. To improve the performance, CRF
layer is attached to focus on sentence-level and ensures the
predicted tags are correct. The codon box paradigm [13],
shown in Supplementary Table 1 (Supplementary Data available
online), is involved to reduce the tag class number and improve
performance. We use cross-entropy loss to calculate the loss
between output and ground truth.

RNA-Bart
The UTR generation can be regarded as a machine translation
task, which aims to find the sentence that is most relevant to
the input sentence. In our scenario, we aim to find the most
relevant UTR sequence with given ORF. In this study, we developed
a transformer-based pretraining model, RNA-Bart, to generate
UTR. Transformer-based model can encode the long sequence pre-
cisely because it is fully based on attention mechanism [29]. The
pretraining phase enables model to learn how to represent input
sequences and serve for the downstream task [30]. Therefore,
RNA-Bart can perform well in the machine translation task. The
structure of RNA-Bart is shown in Figure 2D. It uses word embed-
ding and position embedding to encode the input ORF token first,
and then, the ORF sequence will be encoded to a vector with
512 dimensions and decoded to UTR. Similar to mBART, RNA-Bart
consists of two training phases. In pretraining phase, we cover 15%
tokens in UTR and ORF sequences and train an auto-regressive
model with 512 max length to recover the masked tokens. Then,
we keep the auto-regressive model and fine-tune it to machine
translation model that can generate UTR sequences. Because of
the relatively small dataset of RNA set, complex models such as
mBART are prone to overfitting. In contrast, RNA-Bart is a light
model that uses fewer layers and less parameters can avoid this
issue. Meanwhile, some studies demonstrate that the fewer layers
in transformer-based model would not affect accuracy [31, 32]. As
for tokenizing, we use WordPiece model [33] with a 70 000 token
vocabulary instead of sentence-piece model [34] like mBART.

We adopt tokenization, a common method in NLP, to reduce
the length of input sequences. Tokenization greedily split mRNA
sequence into several short sequences based on the frequency of
these short sequences in corpus. For example, ‘ATGGACTTTC’ will
be split into ‘ATGGAC’, ‘TTTC’ (two tokens only) instead of ‘A’, ‘T’,
‘G’, ‘G’, ‘A’, ‘C’, ‘T’, ‘T’, ‘T’ and ‘C’ (10 tokens) since ‘ATGGAC’ and
‘TTTC’ appear frequently in the training corpus.

Apart from tokenizing, there are two more preprocessing meth-
ods to increase the difference between ORF and UTR: adding

special tokens and converting ORF into codon boxes. Adding
special tokens refers to adding tokens that would not occur in ORF
nor UTR before sequence. Detailed, we add ’<ORF>’ before ORF,
’<5UTR>’ before 5′UTR and ’<3UTR>’ before 3′UTR. As for con-
verting ORF into codon boxes, the input sequence is the translated
codon boxes instead of ORF. Because of these preprocessing meth-
ods, the difference between ORF and UTR is increased. Therefore,
RNA-Bart can distinguish sequence regions and capture sequence
features precisely. The codon box combined with the amino acid
can determine a specific ORF, which ensures the most suitable
UTR is generated.

Results
ORF optimization
Codons are not randomly selected among individuals [20], but
follow some codon rules embedded in cellular environmental
information. To accurately unravel the codon rules, we introduced
BiLSTM-CRF. The input of BiLSTM-CRF is the amino acid sequence,
and the output is the corresponding optimized ORF. In the training
phase, we set the human’s ORF as the ground truth, because
we assume that human’s ORF is the most optimal sequence for
protein translation in human.

To test the performance of ORF optimization, we randomly
split ORFs data into the training set, validation set, and test set
as 8:1:1. The accuracy on the test data set and training dataset
can reach 0.63, 0.71, respectively. This performance is comparable
with that in bacterial cell [13]. In addition, we adjusted hidden
layer dimension and learning rate of BiLSTM-CRF to test the
robustness. The results are shown in Figure 3A. When the learning
rate is 0.003 and the hidden layer dimension is 200, which means
the model reaches the highest accuracy (0.63).

UTR generation
Our goal is to generate UTR sequence that mimic the pattern
of human endogenous UTR. To test UTR optimization method,
we randomly split data into the training set, validation set and
test set as 8:1:1, and used cross validation to test RNA-Bart.
The results are represented in Figure 3B. Jaccard score [35] and
Rouge [36] are used as main index because they are commonly
used indicators in machine translation to measure the similarity
between two sequences. Jaccard is calculated as the size of the
intersection divided by the size of the union of the sample sets.
If two sequences are the same, the intersection will equal the
union and Jaccard will be ‘1’. On the other hand, if two sequences
are different, the intersection will be empty and Jaccard will be
‘0’. Rouge is calculated as the overlap of n-grams between the
output and reference. N-gram is continuous N tokens. Similar
output has more matched n-grams, as well the higher Rouge
score. The higher Jaccard and Rouge score represent higher extend
similarity of predicted sequence with human UTR sequence. We
compared RNA-Bart with RNN (recurrent neural network), LSTM
(long-short-term memory), BiLSTM (bi-direction long-short-term
memory), BiLSTM with attention and Transformer. The results
are shown in Table 1. RNA-Bart has the highest score (0.811 and
0.783), and significantly outperforms RNN (0.652 and 0.623), LSTM
(0.704 and 0.692), BiLSTM (0.727 and 0.713). It also reaches higher
score than Transformer (0.767 and 0.741). In addition, we com-
pared the UTR sequence generated by different preprocessing
methods. As Figure 3A shown, codon box combined with special
tokens has the highest value for both 5′UTR (0.811 and 0.783)
and 3′UTR (0.798 and 0.856), and are substantially better than

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad001#supplementary-data
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Figure 3. Statistic results of iDRO. (A) Accuracy of different BiLSTM-CRF hyperparameter setup. Different groups represent different hidden layer
dimension and colors represent different learning rate. The setup with 200 dimensions and 0.003 learning rate has the highest accuracy (B) Machine
translation indicators for different preprocessing method. The combination of Codon Box and Special Tokens has the highest score for both Jaccard and
Rouge. Jaccard and Rouge are commonly used to indicate the similarity between two sentences (C) Machine translation indicators of different learning
rate. In both 5′UTR generation and 3′UTR generation, RNA-Bart with 5 ∗ 10−5 learning rate has the best performance.

Table 1. Jaccard and Rouge for different deep-learning method
for generating 5′UTR

Method Jaccard Rouge

RNN (recurrent neural network) 0.652 0.623
LSTM (long-short-term memory) 0.704 0.692
BiLSTM (Bi-direction long-short-term memory) 0.727 0.713
Transformer 0.767 0.741
RNA-Bart 0.811 0.783

the tokenize-only approach. The detailed results are shown in
Supplementary Table 2 (Supplementary Data available online).

To further verify our model, we took EGFP as example and
use miRanda [37] to predict miRNA (microRNA) binding site
and secondary structure of our UTRs (sequences are shown in
Supplementary Table 3, Supplementary Data available online)
and the results are shown in Figure 4. As miRNA is known
for negative regulating complementary mRNA by inducing
translational repression and mRNA decay [38], the mRNA
sequence that containing more miRNA binding sites may has
lower stability. iDRO and globin UTR have comparable number
of miRNA binding sites and both of them are much lower

than control sequence (Figure 4A and Supplementary Table 4,
Supplementary Data available online). In addition, based on the
Nussinov algorithm and energy information, Zuker et al. proposed
a minimum free energy (mfe) algorithm [39], which assumes that
mRNA structure has a great relationship with energy. With the
aid of this algorithm, we calculated the mfe and predicated the
secondary structure of 5′UTR and 3′UTR with software RNAfold
([40]; Figure 4B).

There is ample evidence that secondary structures with the
5′ and 3′UTR sequences mediate translational control [41]. We
next analyzed the secondary structure of 5′ and 3′UTR. The
iDRO-predicted 5′UTR has a more secondary structures than
globin 5′UTR. The role of secondary structure on 5′UTR remains
controversial. Although most highly structured 5′UTRs have an
inhibitory effect on translation [42], there are some examples of
translation enhancement by 5′UTR secondary structures such as
Hsp70 [43, 44], surfactant protein A [45] and GLUT1 transporter
[46, 47]. To confirm the high structure in 5′UTR is not always a
negative regulator for translation, we generated 5′UTR using the
deep-learning model established from polysome profiling of a
library of 280 000 randomized 5′UTR [15]. We found that complex
secondary structures exist in all top-ranked 5′UTR with the
highest ribosome loading (Figure 4C). We also studied the 5′UTR
in those genes that can upregulate translation levels rapidly in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad001#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad001#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad001#supplementary-data
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Figure 4. miRNA binding site, secondary structure and minimum free energy (mfe) (kcal/mol) for EGFP UTRs. (A) miRNA binding site. (B) Secondary
structure for globin, control and iDRO UTRs. (C) Secondary structure and mfe (kcal/mol) for the top 5′UTR with the highest ribosome loading. (D)
Secondary structure and mfe (kcal/mol) for 5′UTR from the top five genes with the largest fold changes of upregulated translation efficiency after LPS
stimulation.

dendritic cells after lipopolysaccharide (LPS) stimulation using
reported quantitative transcriptome and proteasome data [48,
49]. As results showed (Figure 4D), all the five genes (1433B,
2AAA, 3BP1, AL3A2 and AL9A1) with the largest fold change of
translation upregulation after stimulation have highly structured
5′UTR. On the other hand, the secondary structure on 3′UTR
is generally believed to aid mRNA translation and stability
via interaction with trans-acting regulatory factors [41, 47].
Meanwhile, the 3′UTR sequence predicted by iDRO contains
more complex secondary structure, which may improve the
mRNA translation and stability (Figure 4B) compared with globin
3′UTR.

Experimental validation
We used the EGFP gene as an example to verify our method.
EGFP amino acid sequence is input to iDRO. The combination
(codon box plus Special tokens for 5′UTR and 3′UTR) was used to
compare with the globin 5′UTR/3′UTR. In addition, to emphasize
that preprocessing is necessary, the tokenize-only model was
used as control sequence. The sequences of EGFP gene with
optimized codon and 5′UTR/3′UTR used in this study were listed
in Supplementary Table 3 (see Supplementary Data available
online). The mRNAs were transfected into HEK 293 cells and
translated into functional protein with high efficiency. The results
of flow cytometry analysis showed that ≥90% cells expressed
EGFP (Figure 5A). Next, we analyzed the geometric mean of
EGFP fluorescence density of each group. The results showed
that the EGFP fluorescence density of cells transfected with

mRNA containing de novo designed 5′UTR and 3′UTR was 1.2-
fold higher than the HBA 5′UTR and 3′UTR, which is widely used
in mRNA synthesis [27]. Although the fluorescence density of
cells transfected with mRNA containing control 5′UTR/3′UTR was
half of HBA 5′UTR/3′UTR (Figure 5B).

Discussion
Regarding the performance and robustness of iDRO, Figure 3A
shows the cross-validation results of RNA-Bart. Both UTR and ORF
are composed of ‘ATCG’ and the model can be confused. The ‘A’
in the UTR is not the same as the ‘A’ in the ORF. Without further
preprocessing, the model may not be able to distinguish which
area ‘A’ belongs to and leading to poor performance. On the con-
trary, special tokens directly indicate the domain, and the codon
box changes the alphabet of ORF. These preprocessing methods
help model identify areas and encode ‘ATCG’ correctly, resulting in
better performance. In addition, we adjust hidden layer dimension
and learning rate in a small range to test the robustness of iDRO.
The results are shown in Figure 3B and C. Small-scale parameter
adjustment has little effect on model performance, indicating
that iDRO is robust to hyperparameters setup and has a good
generalization.

Our approach takes advantage of self-attention mechanism,
thus it is interesting to compare our approach with other attention
features techniques such as genetic algorithm [50, 51], quantum-
behaved multiverse optimization (QMVO; [52]) and BiLSTM with
attention [53]. Genetic algorithm is a popular approach for
optimization and feature selection, and QMVO is one of the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad001#supplementary-data
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Figure 5. The flow cytometry analysis of mRNA transfected HEK-293 cells. (A) EGFP gene expression in mRNA transfected HEK-293 cells. (B) The relative
geometric mean of EGFP fluorescence density in EGFP positive cells.

Table 2. Jaccard and Rouge for feature selection for generating
5′UTR

Method Jaccard Rouge

Genetic algorithm 0.719 0.701
QMVO (quantum-behaved multiverse optimization) 0.734 0.713
BiLSTM with attention 0.753 0.736
iDRO without feature selection 0.811 0.783

bio-inspired algorithms based on multiverse theory in physics.
Both of them can remove redundant information and may get
a better data representation, whereas attention mechanism
[53] can also increase model performance by emphasizing the
connection importance in sequence. We compared our model
iDRO with genetic algorithm, QMVO and BiLSTM with attention,
and the results are presented in Table 2. iDRO (0.811 and 0.783)
substantially outperforms genetic algorithm (0.719 and 0.701) and
QMVO (0.734 and 0.713) since the token selection may introduce
ambiguity into sequence. iDRO also significantly outperforms
BiLSTM (0.753 and 0.736) because BiLSTM may not able to capture
long-distance connections in sequences. The parameters for each
approach were set as follows. First for genetic algorithm, we set
cross rate as 0.5 mutation rate as 0.001, population size as 1000,
epoch as 100; second for QMVO, we set min Wormhole existence
probability as 0.2 and the max Wormhole existence probability as
1 and finally for BiLSTM with attention we set the hidden layer
dimension as 200; the learning rate as 0.003; the batch size as 32
and the dropout rate as 0.5.

In the experimental validation, we used the EGFP reporter
gene which is a widely used strategy for mRNA sequence
optimization [54]. As experiments results showed that mRNA
sequence generated by iDRO yielded higher protein expression, we
next used iDRO for SARS-CoV-2 spike protein (sequences shown
in Supplementary Table 5, Supplementary Data available online).
To be consistent with Pfizer-BioNTech vaccine BNT162b2 [55] and
Moderna vaccine mRNA-1273 [56], in our optimization, the amino

acids K986 and V987 were replaced with 2 prolines to stabilize
the trimers of SARS-CoV-2 spike proteins. We analyzed miRNA
binding site as well as secondary structure for mRNA-1273,
BNT162b2 and iDRO UTRs. The results are shown in Figure 6A and
Supplementary Table 6 (Supplementary Data available online).
iDRO UTRs have fewer or comparable miRNA binding sites
(4 sites in 5′UTR and 11 sites in 3′UTR), compared with
mRNA-1273 (6 sites in 5′UTR and 10 sites in 3′UTR) and BNT162b2
(9 sites in 5′UTR and 11 sites in 3′UTR). The iDRO-generated 5′UTR
and 3′UTR have lower mfe (−38.10 kcal/mol and −107.8 kcal/mol)
compared with BNT162b2 (−9.70 and −37 kcal/mol) and mRNA-
1273 (−4.62 and −86.40 kcal/mol) in Figure 6B, manifesting
that iDRO-generated mRNA sequence may yield high level of
antigen expression and elicit strong immune protection if used
as vaccine. Compared with BNT162b and mRNA-1273, the iDRO
5′UTR forms long stem structure, composed of multiple G/C pairs
(Figure 6B). The 5′UTR in mRNA-1273 is patented sequence de
novo developed by Moderna (U.S. Patent US 10881730B2), and it
only has a short 6 G/C pairs-formed stem structure. The 5′UTR
of BNT162b2 incorporates the 5′UTR of human α-globin, and it
has two short stem structures composed of G/C and A/U pairs. As
mentioned in the EGFP mRNA optimization (Figure 4), contrary to
conventional thinking, the stable secondary structure in iDRO
5′UTR does not necessarily imply low translation efficiency
[57]. Another thing worth noting is all U nucleotides in the
BNT162b and mRNA-1273 have been replaced with N1-methyl-
pseudouridine (ψ) to reduce immune reaction towards mRNA
and to increase protein production [55, 56], and thus the real
secondary structure may be slightly different with the predicated
results.

With the world starting another year in the pall of the pan-
demic, new SARS-CoV-2 variants have become a cause for concern
for governments and epidemiologists around the world. The omi-
cron variant is spreading at a rate not seen with previous variants
and Moderna and Pfizer-BioNTech are working on the vaccine
against the omicron variant. In this study, we also used iDRO to
generate mRNA sequence for spike protein of alpha, beta, gamma,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad001#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad001#supplementary-data
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Figure 6. miRNA binding site, secondary structure and minimum free energy (mfe) (kcal/mol) for SARS-CoV-2 spike protein. (A) miRNA binding site (B)
Secondary structure and mfe (kcal/mol) for Pfizer-BioNTech vaccine BNT162b2, Moderna vaccine mRNA-1273 and iDRO UTRs. (C) Secondary structure
and mfe (kcal/mol) for SARS-CoV-2 variants spike protein.

delta and omicron variants. The generated sequences are shown
in Supplementary Table 7, Supplementary Data available online.
The predicted secondary structure and minimum free energy for
each UTRs are shown in Figure 6C. The Alpha and Beta variants
have the same predicated UTR because they have similar spike
proteins sequences.

For the long mRNA sequence data in this study, the long
sequence dependency problem is one of the biggest obstacle for
analysis. The long sequence dependency challenge is not only
the high computation requirements but also the difficulty to
learn the relationship between tokens. BiLSTM analyzes sequence
data in forwarding order and reversing order. It uses forget and
input gates to drop useless information and keep vital informa-
tion. However, it still cannot fully address the long sequence
dependency problem as it requires high computation resources.
The transformer uses self-attention to analyze sequences, and
it eliminates sequence dependency and allows full GPU acceler-
ation. But the older version of Transformer cannot analyze the
relationship between tokens well. To overcome above mentioned
issues, we developed the integrated deep-learning model iDRO
to optimize 5′UTR, codon usage and 3′UTR simultaneously that
enables users to design the optimal mRNA sequence to enhance

protein expression level, thus improving the efficacy of mRNA
medicines. Through our pipeline, we can optimize the whole
sequence of mRNA vaccines and handle various kinds of mRNA
optimization.

Conclusion and future work
In this study, we developed an integrated mRNA sequence opti-
mization method, iDRO. It can generate mRNA sequences that are
similar to human genome and has high translation efficiency. The
structural and MFE analysis suggested the predicted sequences
are stable and may have better translation efficiency. Our bio-
logical experiments showed the sequence generated by iDRO has
higher protein expression than the α-globin UTR. Although iDRO
achieves good performance. This iDRO approach could be further
improved, e.g. regarding to the transform from ORF to 5′ and
3′UTR, we might be able to get a good performance by consid-
ering multilingual model [58]. Contrastive learning [59], which
helps model capture sequences features from different aspects,
could be considered here to give a better representation of input
data. Different pretraining tasks such as shuffled sentence [60]
could also be recruited to improve the performance of our model.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad001#supplementary-data
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Finally, these strategies will be validated by biological experiments
for various genes using multiple cell lines, as well as in vivo
experiments. Eventually, our study will be widely applicable to
all therapeutic applications of mRNA medicines, e.g. infectious
disease, cancer and aging.

Tool availability
The software is freely available for academic use only upon
request.

Key Points

• mRNA vaccine optimization;
• Sequence deep learning;
• Transformer-based model.
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Funding
Gong, Luo and Feng were partially supported by Center of
Excellence-International Collaboration Initiative Grant, West
China Hospital, Sichuan University (no. 139170052) and 1·3·5
project for disciplines of excellence–Clinical Research Incu-
bation Project, West China Hospital, Sichuan University (no.
2019HXFH022). Guo was supported by Sichuan Science and Tech-
nology Program, (no. 2022YFS0228). Fu was partially supported
by National Natural Science Foundation of China (no. 61876034).
Wen and Zhou were partially supported by NIH R01GM123037,
U01AR069395, R01CA241930 and NSF 2217515.

References
1. Garcia-Beltran WF, Denis KJS, Hoelzemer A, et al. mRNA-

based COVID-19 vaccine boosters induce neutralizing immu-
nity against SARS-CoV-2 omicron variant. Cell 2021;184:2372–
2383.e9.

2. Bettini E, Locci M. SARS-CoV-2 mRNA vaccines: immunological
mechanism and beyond. Vaccine 2021;9:147.

3. Cagigi A, Loré K. Immune responses induced by mRNA vaccina-
tion in mice, monkeys and humans. Vaccine 2021;9:61.

4. Radford A, Narasimhan K, Salimans T, et al. Improving language
understanding by generative pre-training. 2018;2018.

5. Grantham R, Gautier C, Gouy M, et al. Codon catalog usage and
the genome hypothesis. Nucleic Acids Res 1980;8:r49–62.

6. Jia L, Qian S-B. Therapeutic mRNA engineering from head to tail.
Acc Chem Res 2021;54:4272–82.

7. Liu H, Yin J, Xiao M, et al. Characterization and evolution of 5′ and
3′ untranslated regions in eukaryotes. Gene 2012;507:106–11.

8. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer
immunotherapy. Mol Cancer 2021;20:1–23.

9. Hanson G, Coller J. Codon optimality, bias and usage in transla-
tion and mRNA decay. Nat Rev Mol Cell Biol 2018;19:20–30.

10. Villalobos A, Ness JE, Gustafsson C, et al. Gene designer: a syn-
thetic biology tool for constructing artificial DNA segments. BMC
bioinformatics 2006;7:1–8.

11. Ross J, Sullivan TD. Half-lives of beta and gamma globin messen-
ger RNAs and of protein synthetic capacity in cultured human
reticulocytes. Blood 1985;66:1149–54.

12. Asrani KH, Farelli JD, Stahley MR, et al. Optimization of mRNA
untranslated regions for improved expression of therapeutic
mRNA. RNA Biol 2018;15:756–62.

13. Fu H, Liang Y, Zhong X, et al. Codon optimization with deep
learning to enhance protein expression. Sci Rep 2020;10:1–9.

14. Trösemeier J-H, Rudorf S, Loessner H, et al. Optimizing the
dynamics of protein expression. Sci Rep 2019;9:1–15.

15. Sample PJ, Wang B, Reid DW, et al. Human 5′ UTR design and
variant effect prediction from a massively parallel translation
assay. Nat Biotechnol 2019;37:803–9.

16. Sultana N, Hadas Y, Sharkar MTK, et al. Optimization of 5′

untranslated region of modified mRNA for use in cardiac or hep-
atic ischemic injury. Mol Ther Methods Clin Dev 2020;17:622–33.

17. von Niessen AGO, Poleganov MA, Rechner C, et al. Improv-
ing mRNA-based therapeutic gene delivery by expression-
augmenting 3′ UTRs identified by cellular library screening. Mol
Ther 2019;27:824–36.

18. Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for
sequence tagging arXiv preprint arXiv:1508.01991. 2015.

19. Liu Y, Gu J, Goyal N, et al. Multilingual denoising pre-training for
neural machine translation. Trans Assoc Comput Linguist 2020;8:
726–42.

20. Hershberg R, Petrov DA. Selection on codon bias. Annu Rev Genet
2008;42:287–99.

21. Quax TE, Claassens NJ, Söll D, et al. Codon bias as a means to
fine-tune gene expression. Mol Cell 2015;59:149–61.

22. Zhou Z, Dang Y, Zhou M, et al. Codon usage is an important
determinant of gene expression levels largely through its effects
on transcription. Proc Natl Acad Sci 2016;113:E6117–25.

23. Leppek K, Das R, Barna M. Functional 5′ UTR mRNA structures
in eukaryotic translation regulation and how to find them. Nat
Rev Mol Cell Biol 2018;19:158–74.

24. Mayr C. Evolution and biological roles of alternative 3′ UTRs.
Trends Cell Biol 2016;26:227–37.

25. Xia X. Detailed dissection and critical evaluation of the
Pfizer/BioNTech and Moderna mRNA vaccines. Vaccine 2021;
9:734.

26. Jiang T, Shi T, Zhang H, et al. Tumor neoantigens: from basic
research to clinical applications. J Hematol Oncol 2019;12:1–13.

27. Zhuang X, Qi Y, Wang M, et al. mRNA vaccines encoding the HA
protein of influenza A H1N1 virus delivered by cationic lipid
nanoparticles induce protective immune responses in mice.
Vaccine 2020;8:123.

28. Ma L, Zhang Y. Using Word2Vec to process big text data. In: 2015
IEEE International Conference on Big Data (Big Data). New York: IEEE,
2015, 2895–7.

29. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need.
Adv Neural Inf Process Syst 2017;30.

30. Devlin J, Chang M-W, Lee K, et al. Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies 1:4171–86, https://
aclanthology.org/N19-1423.

31. Jiao X, Yin Y, Shang L, et al. Tinybert: distilling bert for nat-
ural language understanding arXiv preprint arXiv:1909.10351.
2019.

32. Lan Z, Chen M, Goodman S, et al. Albert: a lite bert for self-
supervised learning of language representations arXiv preprint
arXiv:1909.11942. 2019.

33. Wu Y, Schuster M, Chen Z, et al. Google’s neural machine
translation system: bridging the gap between human

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad001#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423


Integrated mRNA sequence optimization | 11

and machine translation arXiv preprint arXiv:1609.08144.
2016.

34. Kudo T, Richardson J. Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing: System Demonstrations
66–71, https://aclanthology.org/D18-2012.

35. Real R, Vargas JM. The probabilistic basis of Jaccard’s index of
similarity. Syst Biol 1996;45:380–5.

36. Lin C-Y. Rouge: a package for automatic evaluation of sum-
maries. In: Text Summarization Branches Out, Association for
Computational Linguistics, 2004, 74–81, https://aclanthology.
org/W04-1013.

37. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase:
from microRNA sequences to function. Nucleic Acids Res
2019;47:D155–62.

38. Iwakawa H-o, Tomari Y, Tomari Y. The functions of microR-
NAs: mRNA decay and translational repression. Trends Cell Biol
2015;25:651–65.

39. Zuker M, Stiegler P. Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information.
Nucleic Acids Res 1981;9:133–48.

40. Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA web-
suite. Nucleic Acids Res 2008;36:W70–4.

41. Adeli K. Translational control mechanisms in metabolic reg-
ulation: critical role of RNA binding proteins, microRNAs,
and cytoplasmic RNA granules. Am J Physiol-Endocrinol Metabol
2011;301:E1051–64.

42. Kozak M. Regulation of translation via mRNA structure in
prokaryotes and eukaryotes. Gene 2005;361:13–37.

43. Vivinus S, Baulande S, van Zanten M, et al. An element within the
5′ untranslated region of human Hsp70 mRNA which acts as a
general enhancer of mRNA translation. Eur J Biochem 2001;268:
1908–17.

44. Yueh YG, Yaworsky PJ, Kappen C. Herpes simplex virus tran-
scriptional activator VP16 is detrimental to preimplantation
development in mice. Mol Reprod Dev 2000;55:37–46.

45. Wang G, Guo X, Floros J. Differences in the translation effi-
ciency and mRNA stability mediated by 5′-UTR splice variants
of human SP-A1 and SP-A2 genes. Am J Physiol 2005;289:L497–
508.

46. Boado RJ, Pardridge WM. The 5′-untranslated region of GLUT1
glucose transporter mRNA causes differential regulation of the
translational rate in plant and animal systems. Comp Biochem
Physiol Part B 1997;118:309–12.

47. Boado RJ, Pardridge WM. Amplification of gene expression using
both 5′-and 3′-untranslated regions of GLUT1 glucose trans-
porter mRNA. Mol Brain Res 1999;63:371–4.

48. Schinnerling K, García-González P, Aguillón JC. Gene expres-
sion profiling of human monocyte-derived dendritic cells–
searching for molecular regulators of tolerogenicity. Front
Immunol 2015;6:528.

49. Worah K, Mathan TS, Manh TPV, et al. Proteomics of human
dendritic cell subsets reveals subset-specific surface mark-
ers and differential inflammasome function. Cell Rep 2016;16:
2953–66.

50. Anter AM, Moemen YS, Darwish A, et al. Multi-target QSAR
modelling of chemo-genomic data analysis based on extreme
learning machine. Knowl-Based Syst 2020;188:104977.

51. Anter AM, Abd Elaziz M, Zhang Z. Real-time epileptic seizure
recognition using Bayesian genetic whale optimizer and adap-
tive machine learning. Future Gener Comput Syst 2022;127:
426–34.

52. Anter AM, Elnashar HS, Zhang Z. QMVO-SCDL: a new regression
model for fMRI pain decoding using quantum-behaved sparse
dictionary learning. Knowl-Based Syst 2022;252:109323.

53. Liu G, Guo J. Bidirectional LSTM with attention mechanism
and convolutional layer for text classification. Neurocomputing
2019;337:325–38.

54. Suknuntha K, Tao L, Brok-Volchanskaya V, et al. Optimization
of synthetic mRNA for highly efficient translation and its appli-
cation in the generation of endothelial and hematopoietic cells
from human and primate pluripotent stem cells. Stem Cell Rev
Rep 2018;14:525–34.

55. Vogel AB, Kanevsky I, Che Y, et al. BNT162b vaccines protect
rhesus macaques from SARS-CoV-2. Nature 2021;592:283–9.

56. Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA
vaccine design enabled by prototype pathogen preparedness.
Nature 2020;586:567–71.

57. Araujo PR, Yoon K, Ko D, et al. Before it gets started: regulating
translation at the 5′ UTR. Comp Funct Genom 2012;2012:1–8.

58. Tang Y, Tran C, Li X, et al. Findings of the Association for Computa-
tional Linguistics ACL-IJCNLP 2021 3450–66.

59. Giorgi J, Nitski O, Wang B, et al. Declutr: deep contrastive
learning for unsupervised textual representations arXiv preprint
arXiv:2006.03659. 2020.

60. Cui Y, Yang Z, Liu T. PERT: pre-training BERT with permuted
language model arXiv preprint arXiv:2203.06906. 2022.

https://aclanthology.org/D18-2012
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013

	 Integrated mRNA sequence optimization using deep learning
	 Introduction
	 Material and methods
	 Biological materials and methods
	 Proposed computational approach iDRO
	 Results
	 Discussion
	 Conclusion and future work
	 Key Points
	 Supplementary Data
	 Funding


