9 research outputs found

    SeamlessNeRF: Stitching Part NeRFs with Gradient Propagation

    Full text link
    Neural Radiance Fields (NeRFs) have emerged as promising digital mediums of 3D objects and scenes, sparking a surge in research to extend the editing capabilities in this domain. The task of seamless editing and merging of multiple NeRFs, resembling the ``Poisson blending'' in 2D image editing, remains a critical operation that is under-explored by existing work. To fill this gap, we propose SeamlessNeRF, a novel approach for seamless appearance blending of multiple NeRFs. In specific, we aim to optimize the appearance of a target radiance field in order to harmonize its merge with a source field. We propose a well-tailored optimization procedure for blending, which is constrained by 1) pinning the radiance color in the intersecting boundary area between the source and target fields and 2) maintaining the original gradient of the target. Extensive experiments validate that our approach can effectively propagate the source appearance from the boundary area to the entire target field through the gradients. To the best of our knowledge, SeamlessNeRF is the first work that introduces gradient-guided appearance editing to radiance fields, offering solutions for seamless stitching of 3D objects represented in NeRFs.Comment: To appear in SIGGRAPH Asia 2023. Project website is accessible at https://sites.google.com/view/seamlessner

    RecolorNeRF: Layer Decomposed Radiance Fields for Efficient Color Editing of 3D Scenes

    Full text link
    Radiance fields have gradually become a main representation of media. Although its appearance editing has been studied, how to achieve view-consistent recoloring in an efficient manner is still under explored. We present RecolorNeRF, a novel user-friendly color editing approach for the neural radiance fields. Our key idea is to decompose the scene into a set of pure-colored layers, forming a palette. By this means, color manipulation can be conducted by altering the color components of the palette directly. To support efficient palette-based editing, the color of each layer needs to be as representative as possible. In the end, the problem is formulated as an optimization problem, where the layers and their blending weights are jointly optimized with the NeRF itself. Extensive experiments show that our jointly-optimized layer decomposition can be used against multiple backbones and produce photo-realistic recolored novel-view renderings. We demonstrate that RecolorNeRF outperforms baseline methods both quantitatively and qualitatively for color editing even in complex real-world scenes.Comment: To appear in ACM Multimedia 2023. Project website is accessible at https://sites.google.com/view/recolorner

    ME-PCN: Point Completion Conditioned on Mask Emptiness

    Full text link
    Point completion refers to completing the missing geometries of an object from incomplete observations. Main-stream methods predict the missing shapes by decoding a global feature learned from the input point cloud, which often leads to deficient results in preserving topology consistency and surface details. In this work, we present ME-PCN, a point completion network that leverages `emptiness' in 3D shape space. Given a single depth scan, previous methods often encode the occupied partial shapes while ignoring the empty regions (e.g. holes) in depth maps. In contrast, we argue that these `emptiness' clues indicate shape boundaries that can be used to improve topology representation and detail granularity on surfaces. Specifically, our ME-PCN encodes both the occupied point cloud and the neighboring `empty points'. It estimates coarse-grained but complete and reasonable surface points in the first stage, followed by a refinement stage to produce fine-grained surface details. Comprehensive experiments verify that our ME-PCN presents better qualitative and quantitative performance against the state-of-the-art. Besides, we further prove that our `emptiness' design is lightweight and easy to embed in existing methods, which shows consistent effectiveness in improving the CD and EMD scores.Comment: Accepted to ICCV 2021; typos correcte

    Mass spectrometric and first principles study of Aln_nC−^- clusters

    Get PDF
    We study the carbon-dope aluminum clusters by using time-of-flight mass spectrum experiments and {\em ab initio} calculations. Mass abundance distributions are obtained for anionic aluminum and aluminum-carbon mixed clusters. Besides the well-known magic aluminum clusters such as Al13−_{13}^- and Al23−_{23}^-, Al7_7C−^- cluster is found to be particularly stable among those Aln_nC−^- clusters. Density functional calculations are performed to determine the ground state structures of Aln_nC−^- clusters. Our results show that the Al7_7C−^- is a magic cluster with extremely high stability, which might serve as building block of the cluster-assembled materials.Comment: 4 pages, 6 figure

    Spreading of Nanodroplets of Ionic Liquids on the Mica Surface

    No full text

    Differentiation of Human Induced Pluripotent Stem Cells to Mammary-like Organoids

    No full text
    Human induced pluripotent stem cells (iPSCs) can give rise to multiple cell types and hold great promise in regenerative medicine and disease-modeling applications. We have developed a reliable two-step protocol to generate human mammary-like organoids from iPSCs. Non-neural ectoderm-cell-containing spheres, referred to as mEBs, were first differentiated and enriched from iPSCs using MammoCult medium. Gene expression profile analysis suggested that mammary gland function-associated signaling pathways were hallmarks of 10-day differentiated mEBs. We then generated mammary-like organoids from 10-day mEBs using 3D floating mixed gel culture and a three-stage differentiation procedure. These organoids expressed common breast tissue, luminal, and basal markers, including estrogen receptor, and could be induced to produce milk protein. These results demonstrate that human iPSCs can be directed in vitro toward mammary lineage differentiation. Our findings provide an iPSC-based model for studying regulation of normal mammary cell fate and function as well as breast disease development
    corecore