31 research outputs found
Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice.
Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL2-4. Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr-/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr-/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis
MD-2 binds cholesterol
Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis
Development and validation of an isoform-independent monoclonal antibody–based ELISA for measurement of lipoprotein(a)
The study aims were to develop a new isoform-independent enzyme-linked immunoassay (ELISA) for the measurement of lipoprotein(a) [Lp(a)], validate its performance characteristics, and demonstrate its accuracy by comparison with the gold-standard ELISA method and an LC-MS/MS candidate reference method, both developed at the University of Washington. The principle of the new assay is the capture of Lp(a) with monoclonal antibody LPA4 primarily directed to an epitope in apolipoprotein(a) KIV2 and its detection with monoclonal antibody LPA-KIV9 directed to a single antigenic site present on KIV9. Validation studies were performed following the guidelines of the Clinical Laboratory Improvement Amendments and the College of American Pathologists. The analytical measuring range of the LPA4/LPA-KIV9 ELISA is 0.27-1,402 nmol/L, and the method meets stringent criteria for precision, linearity, spike and recovery, dilutability, comparison of plasma versus serum, and accuracy. Method comparison with both the gold-standard ELISA and the LC-MS/MS method performed in 64 samples with known apolipoprotein(a) isoforms resulted in excellent correlation with both methods (r=0.987 and r=0.976, respectively). Additionally, the variation in apolipoprotein(a) size accounted for only 0.2% and 2.2% of the bias variation, respectively, indicating that the LPA4/LPA-KIV9 ELISA is not affected by apolipoprotein(a) size polymorphism. Peptide mapping and competition experiments demonstrated that the measuring monoclonal antibodies used in the gold-standard ELISA (a-40) and in the newly developed ELISA (LPA-KIV9) are directed to the same epitope, 4076LETPTVV4082, on KIV9. In conclusion, no statistically or clinically significant bias was observed between Lp(a) measurements obtained by the LPA4/LPA-KIV9 ELISA and those obtained by the gold-standard ELISA or LC-MS/MS, and therefore, the methods are considered equivalent
Generation and characterization of LPA-KIV9, a murine monoclonal antibody binding a single site on apolipoprotein (a)
Lipoprotein (a) [Lp(a)] is a risk factor for CVD and a target of therapy, but Lp(a) measurements are not globally standardized. Commercially available assays generally use polyclonal antibodies that detect multiple sites within the kringle (K)IV2 repeat region of Lp(a) and may lead to inaccurate assessments of plasma levels. With increasing awareness of Lp(a) as a cardiovascular risk factor and the active clinical development of new potential therapeutic approaches, the broad availability of reagents capable of providing isoform independence of Lp(a) measurements is paramount. To address this issue, we generated a murine monoclonal antibody that binds to only one site on apo(a). A BALB/C mouse was immunized with a truncated version of apo(a) that contained eight total KIV repeats, including only one copy of KIV2 We generated hybridomas, screened them, and successfully produced a KIV2-independent monoclonal antibody, named LPA-KIV9. Using a variety of truncated apo(a) constructs to map its binding site, we found that LPA-KIV9 binds to KIV9 without binding to plasminogen. Fine peptide mapping revealed that LPA-KIV9 bound to the sequence 4076LETPTVV4082 on KIV9 In conclusion, the generation of monoclonal antibody LPA-KIV9 may be a useful reagent in basic research studies and in the clinical application of Lp(a) measurements
Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density Lipoprotein)-Induced Mitophagy in Macrophages
ObjectiveAtherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp-/- compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp-/- mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy.ConclusionsThese data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis
Interleukin-3/granulocyte macrophage colony-stimulating factor receptor promotes stem cell expansion, monocytosis, and atheroma macrophage burden in mice with hematopoietic ApoE deficiency
Coronary heart disease is associated with monocytosis. Studies using animal models of monocytosis and atherosclerosis such as ApoE(-/-) mice have shown bone marrow (BM) hematopoietic stem and multipotential progenitor cell (HSPC) expansion, associated with increased cell surface expression of the common β subunit of the granulocyte macrophage colony-stimulating factor/interleukin-3 receptor (CBS) on HSPCs. ApoE(-/-) mice also display increased granulocyte macrophage colony-stimulating factor-dependent monocyte production in the spleen. We investigated the role of the CBS in cholesterol-driven HSPC expansion, monocytosis, and atherosclerosis. Ldlr(-/-) mice were transplanted with ApoE(-/-)Cbs(-/-) or ApoE(-/-) BM followed by Western-type diet feeding. Compared with ApoE(-/-) BM-transplanted controls, ApoE(-/-)Cbs(-/-) BM-transplanted mice had reduced BM and splenic HSPC proliferation, fewer blood monocytes and neutrophils, and reduced macrophage content and area of early atherosclerotic lesions. More advanced lesions showed diminished macrophage and collagen content; however, lesion size was unchanged, reflecting an increase in necrotic core area, associated with a marked decrease in Abcg1 expression and increased macrophage apoptosis. Compared with wild-type mice, Western-type diet-fed ApoE(-/-) mice showed increased CBS expression on granulocyte macrophage colony-stimulating factor-producing innate response activator B cells and expansion of this population. ApoE(-/-)Cbs(-/-) BM-transplanted Ldlr(-/-) mice showed a marked decrease in innate response activator B cells compared with ApoE(-/-) BM-transplanted Ldlr(-/-) controls. Increased levels of CBS on HSPCs and splenic innate response activator B cells lead to expansion of these populations in ApoE(-/-) BM-transplanted Ldlr(-/-) mice, contributing to monocytosis and increased lesional macrophage content. However, in more advanced lesions, the CBS also has a role in atherosclerotic plaque stabilizatio