3 research outputs found

    Moving Frames and Noether’s Conservation Laws – the General Case

    Get PDF
    In recent works [1, 2], the authors considered various Lagrangians, which are invariant under a Lie group action, in the case where the independent variables are themselves invariant. Using a moving frame for the Lie group action, they showed how to obtain the invariantized Euler-Lagrange equations and the space of conservation laws in terms of vectors of invariants and the adjoint representation of a moving frame. In this paper, we show how these calculations extend to the general case where the independent variables may participate in the action. We take for our main expository example the standard linear action of SL(2) on the two independent variables. This choice is motivated by applications to variational fluid problems which conserve potential vorticity. We also give the results for Lagrangians invariant under the standard linear action of SL(3) on the three independent variables

    Moving Frames and Conservation Laws for Euclidean Invariant Lagrangians

    No full text
    In recent work, the authors show the mathematical structure behind both the Euler–Lagrange system and the set of conservation laws, in terms of the differential invariants of the group action and a moving frame. In this paper, the authors demonstrate that the knowledge of this structure allows to find the first integrals of the Euler–Lagrange equations, and subsequently, to solve by quadratures, variational problems that are invariant under the special Euclidean groups SE(2) and SE(3)

    On Moving Frames and Noether’s Conservation Laws

    No full text
    Noether’s Theorem yields conservation laws for a Lagrangian with a variational symmetry group. The explicit formulae for the laws are well known and the symmetry group is known to act on the linear space generated by the conservation laws. The aim of this paper is to explain the mathematical structure of both the Euler-Lagrange system and the set of conservation laws, in terms of the differential invariants of the group action and a moving frame. For the examples, we demonstrate, knowledge of this structure allows the Euler-Lagrange equations to be integrated with relative ease. Our methods take advantage of recent advances in the theory of moving frames by Fels and Olver, and in the symbolic invariant calculus by Hubert. The results here generalize those appearing in Kogan and Olver [1] and in Mansfield [2]. In particular, we show results for high-dimensional problems and classify those for the three inequivalent SL(2) actions in the plane
    corecore