7,690 research outputs found
No-horizon theorem for spacetimes with spacelike G1 isometry groups
We consider four-dimensional spacetimes which obey the
Einstein equations , and admit a global spacelike
isometry group. By means of dimensional reduction and local
analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on
which guarantees that cannot contain apparent
horizons. Given any (3+1) spacetime with spacelike translational isometry, the
no-horizon condition can be readily tested without the need for dimensional
reduction. This provides thus a useful and encompassing apparent horizon test
for -symmetric spacetimes. We argue that this adds further evidence
towards the validity of the hoop conjecture, and signals possible violations of
strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra
Enhancement of prompt photons in ultrarelativistic proton-proton collisions from nonlinear gluon evolution at small-
In this paper we estimate the influence of nonlinear gluon evolution in the
production of prompt photons at the LHC pp collider. We assume the validity of
collinear factorization and consider the EHKQS parton distributions, which are
solutions of the GLR-MQ evolution equations and describe quite well the DESY
HERA data, as input in our calculations. We find that both single and
double photon production are enhanced for low- photons and central
rapidities, while this effect is absent for the high- photons. The
implications of this effect for the Quark-Gluon Plasma searches and for the QCD
background to Higgs are also discussed.Comment: 4 pages, 4 figures. Version to be published in Physical Review
Perturbative analysis of generalized Einstein's theories
The hypothesis that the energy-momentum tensor of ordinary matter is not
conserved separately, leads to a non-adiabatic expansion and, in many cases, to
an Universe older than usual. This may provide a solution for the entropy and
age problems of the Standard Cosmological Model. We consider two different
theories of this type, and we perform a perturbative analysis, leading to
analytical expressions for the evolution of gravitational waves, rotational
modes and density perturbations. One of these theories exhibits satisfactory
properties at this level, while the other one should be discarded.Comment: 14 pages, Latex fil
Different faces of the phantom
The SNe type Ia data admit that the Universe today may be dominated by some
exotic matter with negative pressure violating all energy conditions. Such
exotic matter is called {\it phantom matter} due to the anomalies connected
with violation of the energy conditions. If a phantom matter dominates the
matter content of the universe, it can develop a singularity in a finite future
proper time. Here we show that, under certain conditions, the evolution of
perturbations of this matter may lead to avoidance of this future singularity
(the Big Rip). At the same time, we show that local concentrations of a phantom
field may form, among other regular configurations, black holes with
asymptotically flat static regions, separated by an event horizon from an
expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200
Strong curvature singularities in quasispherical asymptotically de Sitter dust collapse
We study the occurrence, visibility, and curvature strength of singularities
in dust-containing Szekeres spacetimes (which possess no Killing vectors) with
a positive cosmological constant. We find that such singularities can be
locally naked, Tipler strong, and develop from a non-zero-measure set of
regular initial data. When examined along timelike geodesics, the singularity's
curvature strength is found to be independent of the initial data.Comment: 16 pages, LaTeX, uses IOP package, 2 eps figures; accepted for
publication in Class. Quantum Gra
Phases of massive scalar field collapse
We study critical behavior in the collapse of massive spherically symmetric
scalar fields. We observe two distinct types of phase transition at the
threshold of black hole formation. Type II phase transitions occur when the
radial extent of the initial pulse is less than the Compton
wavelength () of the scalar field. The critical solution is that
found by Choptuik in the collapse of massless scalar fields. Type I phase
transitions, where the black hole formation turns on at finite mass, occur when
. The critical solutions are unstable soliton stars with
masses \alt 0.6 \mu^{-1}. Our results in combination with those obtained for
the collapse of a Yang-Mills field~{[M.~W. Choptuik, T. Chmaj, and P. Bizon,
Phys. Rev. Lett. 77, 424 (1996)]} suggest that unstable, confined solutions to
the Einstein-matter equations may be relevant to the critical point of other
matter models.Comment: 5 pages, RevTex, 4 postscript figures included using psfi
- âŠ