1,011 research outputs found
In Vivo Fluorescence Imaging of E-Selectin: Quantitative Detection of Endothelial Activation in Arthritis
Rheumatoid arthritis (RA) is a chronic progressive systemic inflammatory disease, characterized by synovial inflammation and localized destruction of cartilage and bone. Heterogeneity in the clinical presentation of RA and uncertainty about which patients will respond to treatment makes diagnosis and management challenging. Fluorescent imaging in the near infrared (NIR) spectrum significantly decreases tissue autofluorescence offering unique potential to detect specific molecular targets in vivo. E-selectin or endothelial adhesion molecule-1 (ELAM-1), a 115kDa glycoprotein induced on endothelial cells in response to pro-inflammatory cytokines involved in RA, such as interleukin (IL)-1 beta and tumour necrosis factor alpha (TNF alpha). E-selectin has been well validated as a potential biomarker of disease activity.
My study aimed to investigate whether E-selectin targeted optical imaging in vivo could be developed as a sensitive, specific and quantifiable preclinical molecular imaging technique, and also whether this approach could be used to delineate the molecular effects of novel therapies. I utilised anti-E-selectin antibody labelled with NIR fluorophore in a mouse model of paw swelling induced by intra-plantar injection of TNF alpha, and in acute collagen-induced arthritis (CIA) in DBA/1 mice, a widely used model of RA. E-selectin generated signal, localised to points of maximal clinical inflammation in the inflamed mouse paw in both models with significant differences to control antibody. Binding of anti-E-selectin antibody was also demonstrated by immunohistochemistry in both models. The ability of E-selectin targeted imaging to detect sub-clinical endothelial activation was also investigated, demonstrating that E-selectin may be an excellent way of determining subclinical vascular activation in CIA. Finally the effect of novel targeted therapy – RB200 which blocks epidermal growth factor (EGF) signalling was investigated. This demonstrated that E-selectin targeted signal could be absolutely abrogated to a level seen in unimmunised healthy control animals, following combination treatment with RB200 and the TNF alpha inhibitor etanercept.
E-selectin targeted optical imaging is a viable in vivo imaging technique that can also be applied to quantify disease and investigate the effects of novel molecular therapies. It holds significant promise as a molecular imaging technique for future translation into the clinic for patients with rheumatoid arthritis and other inflammatory diseases
C1 inhibitor deficiency: 2014 United Kingdom consensus document
C1 inhibitor deficiency is a rare disorder manifesting with recurrent attacks of disabling and potentially life-threatening angioedema. Here we present an updated 2014 United Kingdom consensus document for the management of C1 inhibitor-deficient patients, representing a joint venture between the United Kingdom Primary Immunodeficiency Network and Hereditary Angioedema UK. To develop the consensus, we assembled a multi-disciplinary steering group of clinicians, nurses and a patient representative. This steering group first met in 2012, developing a total of 48 recommendations across 11 themes. The statements were distributed to relevant clinicians and a representative group of patients to be scored for agreement on a Likert scale. All 48 statements achieved a high degree of consensus, indicating strong alignment of opinion. The recommendations have evolved significantly since the 2005 document, with particularly notable developments including an improved evidence base to guide dosing and indications for acute treatment, greater emphasis on home therapy for acute attacks and a strong focus on service organisation. This article is protected by copyright. All rights reserved
Use of whole genome deep sequencing to define emerging minority variants in virus envelope genes in herpesvirus treated with novel antimicrobial K21.
New antivirals are required to prevent rising antimicrobial resistance from replication inhibitors. The aim of this study was to analyse the range of emerging mutations in herpesvirus by whole genome deep sequencing. We tested human herpesvirus 6 treatment with novel antiviral K21, where evidence indicated distinct effects on virus envelope proteins. We treated BACmid cloned virus in order to analyse mechanisms and candidate targets for resistance. Illumina based next generation sequencing technology enabled analyses of mutations in 85 genes to depths of 10,000 per base detecting low prevalent minority variants (<1%). After four passages in tissue culture the untreated virus accumulated mutations in infected cells giving an emerging mixed population (45-73%) of non-synonymous SNPs in six genes including two envelope glycoproteins. Strikingly, treatment with K21 did not accumulate the passage mutations; instead a high frequency mutation was selected in envelope protein gQ2, part of the gH/gL complex essential for herpesvirus infection. This introduced a stop codon encoding a truncation mutation previously observed in increased virion production. There was reduced detection of the glycoprotein complex in infected cells. This supports a novel pathway for K21 targeting virion envelopes distinct from replication inhibition
Analyses of tissue culture adaptation of human Herpesvirus-6A by whole genome deep sequencing redefines the reference sequence and identifies virus entry complex changes
Tissue-culture adaptation of viruses can modulate infection. Laboratory passage and bacterial artificial chromosome (BAC)mid cloning of human cytomegalovirus, HCMV, resulted in genomic deletions and rearrangements altering genes encoding the virus entry complex, which affected cellular tropism, virulence, and vaccine development. Here, we analyse these effects on the reference genome for related betaherpesviruses, Roseolovirus, human herpesvirus 6A (HHV-6A) strain U1102. This virus is also naturally “cloned” by germline subtelomeric chromosomal-integration in approximately 1% of human populations, and accurate references are key to understanding pathological relationships between exogenous and endogenous virus. Using whole genome next-generation deep-sequencing Illumina-based methods, we compared the original isolate to tissue-culture passaged and the BACmid-cloned virus. This re-defined the reference genome showing 32 corrections and 5 polymorphisms. Furthermore, minor variant analyses of passaged and BACmid virus identified emerging populations of a further 32 single nucleotide polymorphisms (SNPs) in 10 loci, half non-synonymous indicating cell-culture selection. Analyses of the BAC-virus genome showed deletion of the BAC cassette via loxP recombination removing green fluorescent protein (GFP)-based selection. As shown for HCMV culture effects, select HHV-6A SNPs mapped to genes encoding mediators of virus cellular entry, including virus envelope glycoprotein genes gB and the gH/gL complex. Comparative models suggest stabilisation of the post-fusion conformation. These SNPs are essential to consider in vaccine-design, antimicrobial-resistance, and pathogenesis
Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection.
Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections
Joint longitudinal hurdle and time-to-event models:an application related to viral load and duration of the first treatment regimen in HIV patients initiating therapy
Increased Cytomegalovirus Secretion and Risks of Infant Infection by Breastfeeding Duration From Maternal Human Immunodeficiency Virus Positive Compared to Negative Mothers in Sub-Saharan Africa.
BACKGROUND: Breastfeeding imparts beneficial immune protection and nutrition to infants for healthy growth, but it is also a route for human immunodeficiency virus (HIV) and human cytomegalovirus (HCMV) infection. In previous studies, we showed that HCMV adversely affects infant development in Africa, particularly with maternal HIV exposure. In this study, we analyzed infants risks for acquisition of HCMV infection from breastfeeding and compared HIV-positive and HIV-negative mothers. METHODS: Two cohorts were studied in Zambia. (1) Two hundred sixty-one HIV-infected and HIV-uninfected mothers were compared for HCMV deoxyribonucleic acid (DNA) loads and genotypes (glycoprotein gO) in milk from birth to 4 months postpartum. (2) Maternally HIV-exposed and HIV-unexposed infants were compared for HCMV infection risk factors. The second cohort of 460 infants, from a trial of micronutrient-fortified complementary-food to breastfeeding, were studied between 6 and 18 months of age. Human cytomegalovirus seroprevalence was assayed, and logistic regression was used to calculate risk factors for HCMV infection, including maternal HIV exposure and breastfeeding duration. RESULTS: Human cytomegalovirus was detected in breast milk from 3 days to 4 months postpartum, with significantly raised levels in HIV-positive women and independent of genotype. In infants, HCMV antibody seroprevalence was 83% by 18 months age. Longer breastfeeding duration increased infection risk in maternally HIV-unexposed (odds ratio [OR] = 2.69 for 18 months vs 6 months vs never; 95% CI, 3.71-111.70; P < .001). CONCLUSIONS: Prolonged breastfeeding, which is common in Africa, increased risk of HCMV infection in infants. Both HIV-positive and HIV-negative women had extended milk HCMV secretion. Women who were HIV-positive secreted higher HCMV levels, and for longer duration, with their children at increased infection risk. Human cytomegalovirus control is required to maintain health benefits of breastfeeding
A novel strategy to reduce very late HIV diagnosis in high-prevalence areas in South-West England:serious incident audit
Impact of late diagnosis and treatment on life expectancy in people with HIV-1:UK Collaborative HIV Cohort (UK CHIC) Study
Objectives To estimate life expectancy for people with HIV undergoing treatment compared with life expectancy in the general population and to assess the impact on life expectancy of late treatment, defined as CD4 count <200 cells/mm(3) at start of antiretroviral therapy.Design Cohort study.Setting Outpatient HIV clinics throughout the United Kingdom.Population Adult patients from the UK Collaborative HIV Cohort (UK CHIC) Study with CD4 count <= 350 cells/mm(3) at start of antiretroviral therapy in 1996-2008.Main outcome measures Life expectancy at the exact age of 20 (the average additional years that will be lived by a person after age 20), according to the cross sectional age specific mortality rates during the study period.Results 1248 of 17 661 eligible patients died during 91 203 person years' follow-up. Life expectancy (standard error) at exact age 20 increased from 30.0 (1.2) to 45.8 (1.7) years from 1996-9 to 2006-8. Life expectancy was 39.5 (0.45) for male patients and 50.2 (0.45) years for female patients compared with 57.8 and 61.6 years for men and women in the general population (1996-2006). Starting antiretroviral therapy later than guidelines suggest resulted in up to 15 years' loss of life: at age 20, life expectancy was 37.9 (1.3), 41.0 (2.2), and 53.4 (1.2) years in those starting antiretroviral therapy with CD4 count <100, 100-199, and 200-350 cells/mm(3), respectively.Conclusions Life expectancy in people treated for HIV infection has increased by over 15 years during 1996-2008, but is still about 13 years less than that of the UK population. The higher life expectancy in women is magnified in those with HIV. Earlier diagnosis and subsequent timely treatment with antiretroviral therapy might increase life expectancy.</p
Lower healthcare costs associated with the use of a single-pill ARV regimen in the UK, 2004-2008
Aim: Investigate the cost and effects of a single-pill versus two- or three pill first-line antiretroviral combinations in reducing viral load, increasing CD4 counts, and first-line failure rate associated with respective regimens at 6 and 12 months. Methods: Patients on first-line TDF+3TC+EFV, TDF+FTC+EFV, TruvadaH+EFV or AtriplaH between 1996–2008 were identified and viral load and CD4 counts measured at baseline, six and twelve months respectively. Factors that independently predicted treatment failure at six and twelve months were derived using multivariate Cox’s proportional hazard regression analyses. Use and cost of hospital services were calculated at six and twelve months respectively. Results: All regimens reduced viral load to below the limit of detection and CD4 counts increased to similar levels at six and twelve months for all treatment regimens. No statistically significant differences were observed for rate of treatment failure at six and twelve months. People on AtriplaH generated lower healthcare costs for non-AIDS patients at £5,340 (£5,254 to £5,426) per patient-semester and £9,821 (£9,719 to £9,924) per patient-year that was £1,344 (95%CI £1,222 to £1,465) less per patient-semester and £1,954 (95%CI £1,801 to £2,107) less per patient-year compared with TruvadaH+EFV; healthcare costs for AIDS patients were similar across all regimens. Conclusion: The single pill regimen is as effective as the two- and three-pill regimens of the same drugs, but if started as first-line induction therapy there would be a 20% savings on healthcare costs at six and 17% of costs at twelve months compared with TruvadaH+EFV, that generated the next lowest costs
- …
