67 research outputs found

    Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs

    Get PDF
    Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications

    Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification

    Get PDF
    Recently, nanofibers have come to be considered one of the sustainable routes with enormous applicability in different fields, such as wastewater treatment. Electrospun nanofibers can be fabricated from various materials, such as synthetic and natural polymers, and contribute to the synthesis of novel nanomaterials and nanocomposites. Therefore, they have promising properties, such as an interconnected porous structure, light weight, high porosity, and large surface area, and are easily modified with other polymeric materials or nanomaterials to enhance their suitability for specific applications. As such, this review surveys recent progress made in the use of electrospun nanofibers to purify polluted water, wherein the distinctive characteristics of this type of nanofiber are essential when using them to remove organic and inorganic pollutants from wastewater, as well as for oil/water (O/W) separation

    Synthesis, molecular docking, and dynamic simulation targeting main protease (Mpro) of new, Thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors

    Get PDF
    Many biological activities of pyridine and thiazole derivatives have been reported, including antiviral activity and, more recently, as COVID-19 inhibitors. Thus, in this paper, we designed, synthesized, and characterized a novel series of N-aminothiazole-hydrazineethyl-pyridines, beginning with a N′-(1-(pyridine-3-yl)ethylidene)hydrazinecarbothiohydrazide derivative and various hydrazonoyl chlorides and phenacyl bromides. Their Schiff bases were prepared from the condensation of N-aminothiazole derivatives with 4-methoxybenzaldehyde. FTIR, MS, NMR, and elemental studies were used to identify new products. The binding energy for non-bonding interactions between the ligand (studied compounds) and receptor was determined using molecular docking against the SARS-CoV-2 main protease (PDB code: 6LU7). Finally, the best docked pose with highest binding energy (8a = −8.6 kcal/mol) was selected for further molecular dynamics (MD) simulation studies to verify the outcomes and comprehend the thermodynamic properties of the binding. Through additional in vitro and in vivo research on the newly synthesized chemicals, it is envisaged that the achieved results will represent a significant advancement in the fight against COVID-19

    Utility of N-aryl 2-aroylhydrazono-propanehydrazonoyl chlorides as precursors for synthesis of new functionalized 1,3,4-thiadiazoles with potential antimicrobial activity

    Get PDF
    Starting from N-aryl 2-aroylhydrazono-propanehydrazonoyl chlorides, a series of new functionalized 1,3,4-thiadiazoles were prepared. The structures of the compounds prepared were confirmed by both elemental and spectral analyses as well as by alternate synthesis. The mechanisms of the studied reactions are outlined. The antimicrobial activities of the compounds prepared were screened and the results showed that most of such compounds exhibit considerable activities

    Optical and Thermal Investigations of New Schiff Base/Ester Systems in Pure and Mixed States

    No full text
    New mesomorphic series, 4-hexadecyloxy phenyl-imino-4′-(3-methoxyphenyl)-4″-alkoxybenzoates (An), were prepared and investigated with different thermal and mesomorphic techniques. The synthesized homologous series constitutes four members that differ from each other in the terminal length of flexible chain (n) attached to phenyl ester moiety, which varies between n = 6, 8, 10, and 12 carbons. A lateral CH3O group is attached to the central benzene ring in the meta position with respect to the ester moiety. Molecular structures of all newly prepared homologues were elucidated via FT-IR, 1H and 13C NMR spectroscopy. Mesomorphic and thermal properties were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and the mesophases identified by polarized optical microscopy (POM). DSC and POM examinations revealed that all members of the present series (An) exhibit a purely enantiotropic nematic (N) phase. Comparative evaluations and binary phase diagrams were established between the present homologues and their corresponding shorter one (Bn). The examination revealed that, the length of the flexible alkoxy chain incorporated into the phenylimino moiety is highly effective on the temperature range and stability of the mesophase observed. With respect to the binary mixtures An/Bn, the exhibited N phase showed to cover the whole composition range with eutectic behavior
    • …
    corecore