9 research outputs found

    Do extrusion ages reflect magma generation processes at depth? An example from the Neogene Volcanic Province of SE Spain

    No full text
    The high-K calc-alkaline volcanic rocks along the Neogene Volcanic Province of SE Spain represent crustal anatectic melts mixed with mantle components during the opening of the Alborán Sea. Partially melted metapelitic enclaves, along with the geochemic

    Residence time of S-type anatectic magmas beneath the Neogene Volcanic Province of SE Spain: a zircon and monazite SHRIMP study

    No full text
    Zircon and monazite from three restitic enclaves and one host dacite have been dated by ion microprobe (SHRIMP), with the aim of characterising their Miocene history and defining the timing relationships between crustal melting and eruption in the high-

    Middle Miocene high-pressure metamorphism and fast exhumation of the Nevado-Filabride Complex, SE Spain

    No full text
    This study provides new constraints on fast cooling and exhumation rates of high-pressure metamorphic rocks in young active mountain belts. Ion microprobe (SHRIMP) U-Pb analysis of zircon in a pyroxenite layer of the Cerro del Almirez ultramafic rocks (Nevado-Filábride Complex, southern Spain) gave an age of 15.0 ± 0.6 Myr (95% c.l.). Mineral inclusions demonstrate that zircon formed close to the high-pressure peak. Combined with previous fission track data, the 15 Myr age suggests high cooling (~ 80 °C Myr-1) and exhumation (~ 1.2 cm yr-1) rates for the unit. The new results indicate that both the Nevado- Filábride Complex and the overlying Alpujárride Complex, with somewhat higher ages and exhumation rates, underwent similar metamorphic evolutions at different times. This implies that the Alpujárride rocks were exhumed when the Nevado-Filábride was subducting and that the same tectonic scenario propagated from one portion of the Betic Cordilleras to another

    An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite

    No full text
    Piston cylinder experiments were performed to constrain the pressure and temperature conditions for two high-pressure antigorite dehydration reactions found in silica-enriched serpentinites from Cerro del Almirez (Nevado-Filábride Complex, Betic Cordill

    A reinterpretation of the Nevado-Filabride and Alpujarride complexes (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain)

    No full text
    We investigated gneisses from the upper sequence of the Nevado-Filábride Complex in the western Sierra Nevada, close to the contact with the Permo-Triassic Alpujárride Complex. Despite intense deformation, the occurrence of skarn-like lenses (epidote

    Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle

    No full text
    We present first trace element analyses of the fluid produced during breakdown of antigorite serpentine, a major dehydration reaction occurring at depth within subducting oceanic plates. Microinclusions filled with crystals+aqueous liquid are disseminated within olivine and orthopyroxene grown at pressures and temperatures beyond the stability field of antigorite. Despite hydrogen loss and significant major element changes that have affected the analyzed inclusions, their trace element composition still reflects characteristics of the subduction fluid released during serpentinite dehydration. The fluid is enriched in incompatible elements indicating either (1) interaction with fluids derived from crustal slab components, or (2) dehydration of altered (serpentinized) oceanic mantle previously enriched in incompatible elements. Several features of the analyzed fluid+mineral inclusions (high Pb/Th, Pb/U and Pb/Ce) are in agreement with available experimental work, as well as with the geochemical signatures of most arc lavas and of several ocean island basalt mantle sources. The trace element patterns of the fluid+mineral inclusions do not display relative enrichment in large ion lithophile elements compared to high field strength elements, thus suggesting that the latter elements may become soluble in natural subduction fluids

    Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle

    No full text
    International audienceBefore attaining the mantle wedge, where they trigger partial melting, volatiles released from dehydration reactions in the slab have to migrate across a relatively cold (<750 degrees C), peridotite-layer above the incoming slab. In order to unravel the mechanisms allowing for this initial stage of fluid transport, we performed a detailed field and microstructural study of metamorphic prograde peridotites in the Cerro del Almirez ultramafic massif (Betic Cordillera, Spain), where evidences of one of the most important dehydration reactions in subduction zones, the high-pressure antigorite breakdown (P = 1.6-1.9 GPa and T approximate to 680 degrees C), can be mapped in the field. This reaction led to arborescent growth of centimeter-size olivine and orthopyroxene, producing a chlorite-harzburgite with a spinifex-like texture. Microstructural observations and crystal preferred (CPO) mapping show no evidences of solid-state deformation during the prograde growth of olivine and orthopyroxene at the expenses of antigorite. However, a few tens to a hundred meters away from the reaction front, the metamorphic texture is partially obliterated by grain-size reduction in roughly planar conjugate zones, a few mm to meters wide. Grain size reduction zones (GSRZ) are characterized by (1) sharp contacts with undeformed spinifex-like texture domains, (2) important reduction of the olivine grain size (60-250 mu m), (3) olivine color change from brownish to colorless, (4) decrease in the modal amount of orthopyroxene, and (5) at the mm- to cm-scale, irregular shapes and abrupt terminations. Field and microstructural observations exclude that relative displacement took place across these GSRZ. Changes in modal composition imply reactions with fluids undersaturated in silica. Analysis of olivine crystal-preferred orientations (CPO) in GSRZ shows patterns similar, but more dispersed, than those in neighboring spinifex-like domains. It also reveals mm- to cm-scale discrete domains with rather homogeneous crystallographic orientations suggesting inheritance from the preexisting spinifex-like olivines in the host peridotite. Misorientation angles between neighboring grains in the GSRZ show peaks at similar to 5-10 degrees and similar to 20 degrees, but rotations are not crystallographically controlled. Based on these observations, we rule out the formation of the GSRZ by dynamic recrystallization during dislocation creep and propose that they record brittle deformation (microcraking) of the spinifex-like chlorite-harzburgite, probably induced by hydrofracturing at high pressure and relative low temperature conditions (680-710 degrees C). High-pressure hydrofracturing can, thus, be invoked as an efficient mechanism for fluid flow across the cold top-slab mantle layer, hence allowing the slab-derived fluids to ingress in the wedge

    Tschermak's substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites

    No full text
    A model for the incorporation of alumina in FeO-MgO-Al2O3-SiO2-H2O (FMASH) serpentinites has been developed by considering ideal Tschermak (Al2Mg-1Si-1) solid solution in antigorite. The antigorite model has been calibrated by fitting the experimental co
    corecore