2,751 research outputs found

    Carbon in global waste and wastewater flows – its potential as energy source under alternative future waste management regimes

    Get PDF
    This study provides a quantification of the maximum energy that can be generated from global waste and wastewater sectors in the timeframe to 2050, as well as of the potential limitations introduced by different future waste and wastewater management regimes. Results show that considerable amounts of carbon are currently stored in waste materials without being recovered for recycling or made available for energy generation. Future levels of energy recovery when maintaining current states of waste and wastewater management systems are contrasted with those that can be attained under a circular system identified here as a system with successful implementation of food and plastic waste reduction policies, maximum recycling rates of all different types of waste streams, and once the recycling capacity is exhausted, incineration of remaining materials to produce energy. Moreover, biogas is assumed to be produced from anaerobic codigestion of food and garden wastes, animal manure, and anaerobically treated wastewater. Finally, we explore the limits for energy generation from waste and wastewater sources should the efficiency of energy recovery be pushed further through development of existing technology. We find that global implementation of such an ideal system could increase the relative contribution of waste and wastewater sources to global energy demand from 2% to 9% by 2040, corresponding to a maximum energy potential of 64 EJ per year. This would however require widespread adoption of policies and infrastructure that stimulate and allow for large-scale waste prevention and separation, as well as highly advanced treatment processes. Giving priority to such efforts would enable circularity of the waste-energy system

    Non-CO2 greenhouse gas emissions in the EU-28 from 2005 to 2050: GAINS model methodology

    Get PDF
    This report presents the GAINS model methodology for the 2016 Reference scenario for emissions of non-CO2 greenhouse gases (GHGs), mitigation potentials and costs in the EU-28 with projections to 2050. The non-CO2 emission scenarios form part of the work under the EUCLIMIT2 project1. The project aims at producing projections for all emissions of GHGs in the EU-28 consistent with the macroeconomic and population projections presented in EC/DG ECFIN (2015). Four modelling groups were involved in the work: PRIMES (National Technical University of Athens), CAPRI (Bonn University), GLOBIOM (IIASA-ESM program) and GAINS (IIASA-MAG program). This report focuses on describing the methodology of the GAINS model for the estimation of the non-CO2 GHGs, i.e., methane (CH4), nitrous oxide (N2O) and three groups of fluorinated gases (F-gases) viz. hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6). The report is structured as follows. Section 2 presents the general GAINS methodology for estimating draft non-CO2 greenhouse gas emissions for EU-28. Sections 3, 4 and 5 describe in detail the methodology applied for estimation of emissions by source for CH4, N2O and Fgases, respectively. Finally, Section 6 provides a comparison between emissions reported by member states to the UNFCCC for years 2005 and 2010 and the emissions estimated by the GAINS model for the same years

    Total thyroidectomy versus hemithyroidectomy for patients with follicular neoplasm. A cost-utility analysis

    Get PDF
    AbstractIntroductionThyroid nodules are a common condition. Overall, 20% of the nodules assessed with FNAB correspond to the follicular pattern. A partial thyroidectomy is the minimal procedure that should be performed to determine the nature of these nodules. Some authors have suggested performing a total thyroidectomy based on the elimination of reoperation and ultrasound follow-up. The aim of this study was to evaluate the most cost-useful surgical strategy in a patient with an undetermined nodule, assessing complications, reoperation, recurrence and costs.Material and methodsA cost-utility study was designed to compare hemithyroidectomy and total thyroidectomy. The outcomes were complications (definitive RLN palsy, permanent hypoparathyroidism, reoperation for cancer, and recurrence of the disease), direct costs and utility. We used the payer perspective at 5 years. A deterministic and probabilistic sensitivity analysis was completed.ResultsIn a deterministic analysis, the cost, utility and cost-utility ratio was COP 12.981.801,44.5andCOP12.981.801, 44.5 and COP 291.310 for total thyroidectomy and COP 14.309.889,42.0and14.309.889, 42.0 and 340.044 for partial thyroidectomy, respectively. The incremental cost-utility ratio was −$535.302 favoring total thyroidectomy. Partial thyroidectomy was more cost-effective when the risks of RLN injury and definitive hypoparathyroidism were greater than 8% and 9% in total thyroidectomy, respectively. In total, 46.8% of the simulations for partial thyroidectomy were located in the quadrant of more costly and less effective.ConclusionUnder a common range of complications, and considering the patient's preference and costs, total thyroidectomy should be selected as the most cost-effective treatment for patients with thyroid nodules and follicular patterns

    Sustainable wastewater management in Indonesia's fish processing industry: Bringing governance into scenario analysis

    Get PDF
    The government of Indonesia has pledged to meet ambitious greenhouse gas mitigation goals in its Nationally Determined Contribution as well as reduce water pollution through its water management policies. A set of technologies could conceivably help achieving these goals simultaneously. However, the installation and widespread application of these technologies will require knowledge on how governance affects the implementation of existing policies as well as cooperation across sectors, administrative levels, and stakeholders. This paper integrates key governance variables--involving enforcement capacity, institutional coordination and multi-actor networks--into an analysis of the potential impacts on greenhouse gases and chemical oxygen demand in seven wastewater treatment scenarios for the fish processing industry in Indonesia. The analysis demonstrates that there is an increase of 24% in both CH4 and CO2 emissions between 2015 and 2030 in the business-as-usual scenario due to growth in production volumes. Interestingly, in scenarios focusing only on strengthening capacities to enforce national water policies, expected total greenhouse gas emissions are about five times higher than in the business-as-usual in 2030; this is due to growth in CH4 emissions during the handling and landfilling of sludge, as well as in CO2 generated from the electricity required for wastewater treatment. In the scenarios where there is significant cooperation across sectors, administrative levels, and stakeholders to integrate climate and water goals, both estimated chemical oxygen demand and CH4 emissions are considerably lower than in the business-as-usual and the national water policy scenarios

    Potentials for future reductions of global GHG and air pollutant emissions from circular municipal waste management systems

    Get PDF
    Recent trajectories of production and consumption patterns have resulted in massively rising quantities of municipal solid waste (MSW). Building on the Shared Socioeconomic Pathways, we build two sets of global scenarios until 2050, namely baseline and mitigation scenarios. We assess trajectories of future MSW generation and the impact of MSW management strategies on methane and air pollutant emissions. In 2050, the adoption of mitigation strategies in the sustainability-oriented scenario yields earlier, and major, co-benefits compared to scenarios in which inequalities are reduced but that are focused solely on technical solutions. In 2050, the GHG emissions in the sustainability-oriented scenario amount to 182 Gg CO2eq/yr of CH4, to be released while particulate matter, and air pollutants from open burning of MSW can be virtually eliminated. We demonstrate that the 6.3 target of the SDG 6 can only be achieved through more ambitious sustainability-oriented scenarios that limit MSW generation and improve management

    Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model

    Get PDF
    Methane is the second most important greenhouse gas after carbon dioxide contributing to human-made global warming. Keeping to the Paris Agreement of staying well below two degrees warming will require a concerted effort to curb methane emissions in addition to necessary decarbonization of the energy systems. The fastest way to achieve emission reductions in the 2050 timeframe is likely through implementation of various technical options. The focus of this study is to explore the technical abatement and cost pathways for reducing global methane emissions, breaking reductions down to regional and sector levels using the most recent version of IIASA's Greenhouse gas and Air pollution Interactions and Synergies (GAINS) model. The diverse human activities that contribute to methane emissions make detailed information on potential global impacts of actions at the regional and sectoral levels particularly valuable for policy-makers. With a global annual inventory for 1990–2015 as starting point for projections, we produce a baseline emission scenario to 2050 against which future technical abatement potentials and costs are assessed at a country and sector/technology level. We find it technically feasible in year 2050 to remove 54 percent of global methane emissions below baseline, however, due to locked in capital in the short run, the cumulative removal potential over the period 2020–2050 is estimated at 38 percent below baseline. This leaves 7.7 Pg methane released globally between today and 2050 that will likely be difficult to remove through technical solutions. There are extensive technical opportunities at low costs to control emissions from waste and wastewater handling and from fossil fuel production and use. A considerably more limited technical abatement potential is found for agricultural emissions, in particular from extensive livestock rearing in developing countries. This calls for widespread implementation in the 2050 timeframe of institutional and behavioural options in addition to technical solutions
    • …
    corecore