890 research outputs found

    Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for light long-lived neutral particles with masses in the O(MeV–GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon–gluon fusion or in association with a W boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb of s = 13 TeV pp collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length cτ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV. [Figure not available: see fulltext.]

    Search for third-generation vector-like leptons in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for vector-like leptons in multilepton (two, three, or four-or-more electrons plus muons) final states with zero or more hadronic Ï„-lepton decays is presented. The search is performed using a dataset corresponding to an integrated luminosity of 139 fb of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. To maximize the separation of signal and background, a machine-learning classifier is used. No excess of events is observed beyond the Standard Model expectation. Using a doublet vector-like lepton model, vector-like leptons coupling to third-generation Standard Model leptons are excluded in the mass range from 130 GeV to 900 GeV at the 95% confidence level, while the highest excluded mass is expected to be 970 GeV. [Figure not available: see fulltext.]

    Measurements of Higgs boson production by gluon-gluon fusion and vector-boson fusion using H→WW*→eνμν decays in pp collisions at Formula Presented with the ATLAS detector

    Get PDF
    Higgs boson production via gluon-gluon fusion and vector-boson fusion in proton-proton collisions is measured in the H → W W * → e ν μ ν decay channel. The Large Hadron Collider delivered proton-proton collisions at a center-of-mass energy of 13 TeV between 2015 and 2018, which were recorded by the ATLAS detector, corresponding to an integrated luminosity of 139 fb - 1 . The total cross sections for Higgs boson production by gluon-gluon fusion and vector-boson fusion times the H → W W * branching ratio are measured to be 12.0 ± 1.4 and 0.75 - 0.16 + 0.19 pb , respectively, in agreement with the Standard Model predictions of 10.4 ± 0.6 and 0.81 ± 0.02 pb . Higgs boson production is further characterized through measurements of Simplified Template Cross Sections in a total of 11 kinematic fiducial regions

    Search for direct production of winos and higgsinos in events with two same-charge leptons or three leptons in pp collision data at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons (e or mu) with the same electric charge, or three leptons. The analysis uses 139 fb(-1) of pp collision data at root s = 13TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without R-parity conservation are considered. In topologies with intermediate states including either Wh or WZ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural R-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an R-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators O and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]

    Search for Higgs boson pair production in association with a vector boson in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    This paper reports a search for Higgs boson pair (hh) production in association with a vector boson (WorZ) using 139 fb of proton–proton collision data at s=13TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically (W→ℓν,Z→ℓℓ,νν with ℓ= e, μ) and the Higgs bosons each decay into a pair of b-quarks. It targets Vhh signals from both non-resonant hh production, present in the Standard Model (SM), and resonant hh production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant Vhh production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance H, in the mass range 260–1000 GeV, that decays into hh, and the other is the production of a heavier neutral pseudoscalar resonance A that decays into a Z boson and H boson, where the A boson mass is 360–800 GeV and the H boson mass is 260–400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models

    Search for dark matter produced in association with a single top quark and an energetic W boson in √s= 13 TeV pp collisions with the ATLAS detector

    Get PDF
    This paper presents a search for dark matter, χ , using events with a single top quark and an energetic W boson. The analysis is based on proton–proton collision data collected with the ATLAS experiment at s= 13 TeV during LHC Run 2 (2015–2018), corresponding to an integrated luminosity of 139 fb . The search considers final states with zero or one charged lepton (electron or muon), at least one b-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, H , arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, a: H→ Wa(→ χχ) . Signal models with H masses up to 1.5 TeV and a masses up to 350 GeV are excluded assuming a tan β value of 1. For masses of a of 150 (250) GeV, tan β values up to 2 are excluded for H masses between 200 (400) GeV and 1.5 TeV. Signals with tan β values between 20 and 30 are excluded for H masses between 500 and 800 GeV

    Measurements of W+W- production in decay topologies inspired by searches for electroweak supersymmetry

    Get PDF
    This paper presents a measurement of fiducial and differential cross-sections for WW production in proton–proton collisions at s=13 TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb . Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the ‘stransverse mass’ variable m , which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct WW production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations

    Search for a new scalar resonance in flavour-changing neutral-current top-quark decays t → qX (q = u, c), with X → bb¯ , in proton-proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle X decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to qX, with X → bb¯ , and the other top quark decays according to the Standard Model, with the W boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from b-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb of proton–proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction B (t → uX) and between 0.018% and 0.078% for the branching fraction B (t → cX), for masses of the scalar particle X between 20 and 160 GeV. [Figure not available: see fulltext.

    Search for neutral long-lived particles in pp collisions at √s = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    A search for decays of pair-produced neutral long-lived particles (LLPs) is presented using 139 fb of proton-proton collision data collected by the ATLAS detector at the LHC in 2015–2018 at a centre-of-mass energy of 13 TeV. Dedicated techniques were developed for the reconstruction of displaced jets produced by LLPs decaying hadronically in the ATLAS hadronic calorimeter. Two search regions are defined for different LLP kinematic regimes. The observed numbers of events are consistent with the expected background, and limits for several benchmark signals are determined. For a SM Higgs boson with a mass of 125 GeV, branching ratios above 10% are excluded at 95% confidence level for values of c times LLP mean proper lifetime in the range between 20 mm and 10 m depending on the model. Upper limits are also set on the cross-section times branching ratio for scalars with a mass of 60 GeV and for masses between 200 GeV and 1 TeV. [Figure not available: see fulltext.
    • …
    corecore