43,152 research outputs found

    Discrete-time Markov chain approach to contact-based disease spreading in complex networks

    Full text link
    Many epidemic processes in networks spread by stochastic contacts among their connected vertices. There are two limiting cases widely analyzed in the physics literature, the so-called contact process (CP) where the contagion is expanded at a certain rate from an infected vertex to one neighbor at a time, and the reactive process (RP) in which an infected individual effectively contacts all its neighbors to expand the epidemics. However, a more realistic scenario is obtained from the interpolation between these two cases, considering a certain number of stochastic contacts per unit time. Here we propose a discrete-time formulation of the problem of contact-based epidemic spreading. We resolve a family of models, parameterized by the number of stochastic contact trials per unit time, that range from the CP to the RP. In contrast to the common heterogeneous mean-field approach, we focus on the probability of infection of individual nodes. Using this formulation, we can construct the whole phase diagram of the different infection models and determine their critical properties.Comment: 6 pages, 4 figures. Europhys Lett (in press 2010

    Morphology and properties evolution upon ring-opening polymerization during extrusion of cyclic butylene terephthalate and graphene-related-materials into thermally conductive nanocomposites

    Get PDF
    In this work, the study of thermal conductivity before and after in-situ ring-opening polymerization of cyclic butylene terephthalate into poly (butylene terephthalate) in presence of graphene-related materials (GRM) is addressed, to gain insight in the modification of nanocomposites morphology upon polymerization. Five types of GRM were used: one type of graphite nanoplatelets, two different grades of reduced graphene oxide (rGO) and the same rGO grades after thermal annealing for 1 hour at 1700{\deg}C under vacuum to reduce their defectiveness. Polymerization of CBT into pCBT, morphology and nanoparticle organization were investigated by means of differential scanning calorimetry, electron microscopy and rheology. Electrical and thermal properties were investigated by means of volumetric resistivity and bulk thermal conductivity measurement. In particular, the reduction of nanoflake aspect ratio during ring-opening polymerization was found to have a detrimental effect on both electrical and thermal conductivities in nanocomposites

    Coupling Matrix Representation of Nonreciprocal Filters Based on Time Modulated Resonators

    Get PDF
    This paper addresses the analysis and design of non-reciprocal filters based on time modulated resonators. We analytically show that time modulating a resonator leads to a set of harmonic resonators composed of the unmodulated lumped elements plus a frequency invariant element that accounts for differences in the resonant frequencies. We then demonstrate that harmonic resonators of different order are coupled through non-reciprocal admittance inverters whereas harmonic resonators of the same order couple with the admittance inverter coming from the unmodulated filter network. This coupling topology provides useful insights to understand and quickly design non-reciprocal filters and permits their characterization using an asynchronously tuned coupled resonators network together with the coupling matrix formalism. Two designed filters, of orders three and four, are experimentally demonstrated using quarter wavelength resonators implemented in microstrip technology and terminated by a varactor on one side. The varactors are biased using coplanar waveguides integrated in the ground plane of the device. Measured results are found to be in good agreement with numerical results, validating the proposed theory
    • …
    corecore