23,410 research outputs found

    Construction of Simulation Wavefunctions for Aqueous Species: D3O+

    Full text link
    This paper investigates Monte Carlo techniques for construction of compact wavefunctions for the internal atomic motion of the D3O+ ion. The polarization force field models of Stillinger, et al and of Ojamae, et al. were used. Initial pair product wavefunctions were obtained from the asymptotic high temperature many-body density matrix after contraction to atom pairs using Metropolis Monte Carlo. Subsequent characterization shows these pair product wavefunctions to be well optimized for atom pair correlations despite that fact that the predicted zero point energies are too high. The pair product wavefunctions are suitable to use within variational Monte Carlo, including excited states, and density matrix Monte Carlo calculations. Together with the pair product wavefunctions, the traditional variational theorem permits identification of wavefunction features with significant potential for further optimization. The most important explicit correlation variable found for the D3O+ ion was the vector triple product {\bf r}OD1â‹…_{OD1}\cdot({\bf r}OD2Ă—_{OD2}\times{\bf r}OD3_{OD3}). Variational Monte Carlo with 9 of such explicitly correlated functions yielded a ground state wavefunction with an error of 5-6% in the zero point energy.Comment: 17 pages including 6 figures, typos correcte

    Deep inelastic scattering from A=3 nuclei and the neutron structure function

    Get PDF
    We present a comprehensive analysis of deep inelastic scattering from He-3 and H-3, focusing in particular on the extraction of the free neutron structure function, F_2^n. Nuclear corrections are shown to cancel to within 1-2% for the isospin-weighted ratio of He-3 to H-3 structure functions, which leads to more than an order of magnitude improvement in the current uncertainty on the neutron to proton ratio F_2^n/F_2^p at large x. Theoretical uncertainties originating from the nuclear wave function, including possible non-nucleonic components, are evaluated. Measurement of the He-3 and H-3 structure functions will, in addition, determine the magnitude of the EMC effect in all A < 4 nuclei.Comment: 40 pages, 12 figures, to appear in Phys. Rev.

    Resolving Molecular Line Emission from Protoplanetary Disks: Observational Prospects for Disks Irradiated by Infalling Envelopes

    Get PDF
    Molecular line observations that could resolve protoplanetary disks of ~100 AU both spatially and kinematically would be a useful tool to unambiguously identify these disks and to determine their kinematical and physical characteristics. In this work we model the expected line emission from a protoplanetary disk irradiated by an infalling envelope, addressing the question of its detectability with subarcsecond resolution. We adopt a previously determined disk model structure that gives a continuum spectral energy distribution and a mm intensity spatial distribution that are consistent with observational constraints of HL Tau. An analysis of the capability of presently working and projected interferometers at mm and submm wavelengths shows that molecular transitions of moderate opacity at these wavelengths (e.g., C17O lines) are good candidates for detecting disk lines at subarcsecond resolution in the near future. We suggest that, in general, disks of typical Class I sources will be detectable.Comment: 41 pages, 16 figures. To be published in The Astrophysical Journa

    Dimer Decimation and Intricately Nested Localized-Ballistic Phases of Kicked Harper

    Full text link
    Dimer decimation scheme is introduced in order to study the kicked quantum systems exhibiting localization transition. The tight-binding representation of the model is mapped to a vectorized dimer where an asymptotic dissociation of the dimer is shown to correspond to the vanishing of the transmission coefficient thru the system. The method unveils an intricate nesting of extended and localized phases in two-dimensional parameter space. In addition to computing transport characteristics with extremely high precision, the renormalization tools also provide a new method to compute quasienergy spectrum.Comment: There are five postscript figures. Only half of the figure (3) is shown to reduce file size. However, missing part is the mirror image of the part show

    Lifetime Measurement of the 6s Level of Rubidium

    Full text link
    We present a lifetime measurements of the 6s level of rubidium. We use a time-correlated single-photon counting technique on two different samples of rubidium atoms. A vapor cell with variable rubidium density and a sample of atoms confined and cooled in a magneto-optical trap. The 5P_{1/2} level serves as the resonant intermediate step for the two step excitation to the 6s level. We detect the decay of the 6s level through the cascade fluorescence of the 5P_{3/2} level at 780 nm. The two samples have different systematic effects, but we obtain consistent results that averaged give a lifetime of 45.57 +- 0.17 ns.Comment: 10 pages, 9 figure

    A Merger Scenario for the Dynamics of Abell 665

    Get PDF
    We present new redshift measurements for 55 galaxies in the vicinity of the rich galaxy cluster Abell 665. When combined with results from the literature, we have good velocity measurements for a sample of 77 confirmed cluster members from which we derive the cluster's redshift z=0.1829 +/- 0.0005 and line-of-sight velocity dispersion of 1390 +/- 120 km/s. Our analysis of the kinematical and spatial data for the subset of galaxies located within the central 750 kpc reveals only subtle evidence for substructure and non-Gaussianity in the velocity distribution. We find that the brightest cluster member is not moving significantly relative to the other galaxies near the center of the cluster. On the other hand, our deep ROSAT high resolution image of A665 shows strong evidence for isophotal twisting and centroid variation, thereby confirming previous suggestions of significant substructure in the hot X-ray--emitting intracluster gas. In light of this evident substructure, we have compared the optical velocity data with N-body simulations of head-on cluster mergers. We find that a merger of two similar mass subclusters (mass ratios of 1:1 or 1:2) seen close to the time of core-crossing produces velocity distributions that are consistent with that observed.Comment: 30 pages and 7 figures. Accepted by the Astrophysical Journal Full resoultion figures 1 and 3 available in postscript at http://www.physics.rutgers.edu/~percy/A665paper.htm

    The B1 shock in the L1157 outflow as seen at high spatial resolution

    Full text link
    We present high spatial resolution (750 AU at 250 pc) maps of the B1 shock in the blue lobe of the L1157 outflow in four lines: CS (3-2), CH3OH (3_K-2_K), HC3N (16-15) and p-H2CO (2_02-3_01). The combined analysis of the morphology and spectral profiles has shown that the highest velocity gas is confined in a few compact (~ 5 arcsec) bullets while the lowest velocity gas traces the wall of the gas cavity excavated by the shock expansion. A large velocity gradient model applied to the CS (3-2) and (2-1) lines provides an upper limit of 10^6 cm^-3 to the averaged gas density in B1 and a range of 5x10^3< n(H2)< 5x10^5 cm^-3 for the density of the high velocity bullets. The origin of the bullets is still uncertain: they could be the result of local instabilities produced by the interaction of the jet with the ambient medium or could be clump already present in the ambient medium that are excited and accelerated by the expanding outflow. The column densities of the observed species can be reproduced qualitatively by the presence in B1 of a C-type shock and only models where the gas reaches temperatures of at least 4000 K can reproduce the observed HC3N column density.Comment: 13 pages, 12 figure
    • …
    corecore