23,410 research outputs found
Construction of Simulation Wavefunctions for Aqueous Species: D3O+
This paper investigates Monte Carlo techniques for construction of compact
wavefunctions for the internal atomic motion of the D3O+ ion. The polarization
force field models of Stillinger, et al and of Ojamae, et al. were used.
Initial pair product wavefunctions were obtained from the asymptotic high
temperature many-body density matrix after contraction to atom pairs using
Metropolis Monte Carlo. Subsequent characterization shows these pair product
wavefunctions to be well optimized for atom pair correlations despite that fact
that the predicted zero point energies are too high. The pair product
wavefunctions are suitable to use within variational Monte Carlo, including
excited states, and density matrix Monte Carlo calculations. Together with the
pair product wavefunctions, the traditional variational theorem permits
identification of wavefunction features with significant potential for further
optimization. The most important explicit correlation variable found for the
D3O+ ion was the vector triple product {\bf r}({\bf
r}{\bf r}). Variational Monte Carlo with 9 of such
explicitly correlated functions yielded a ground state wavefunction with an
error of 5-6% in the zero point energy.Comment: 17 pages including 6 figures, typos correcte
Deep inelastic scattering from A=3 nuclei and the neutron structure function
We present a comprehensive analysis of deep inelastic scattering from He-3
and H-3, focusing in particular on the extraction of the free neutron structure
function, F_2^n. Nuclear corrections are shown to cancel to within 1-2% for the
isospin-weighted ratio of He-3 to H-3 structure functions, which leads to more
than an order of magnitude improvement in the current uncertainty on the
neutron to proton ratio F_2^n/F_2^p at large x. Theoretical uncertainties
originating from the nuclear wave function, including possible non-nucleonic
components, are evaluated. Measurement of the He-3 and H-3 structure functions
will, in addition, determine the magnitude of the EMC effect in all A < 4
nuclei.Comment: 40 pages, 12 figures, to appear in Phys. Rev.
Resolving Molecular Line Emission from Protoplanetary Disks: Observational Prospects for Disks Irradiated by Infalling Envelopes
Molecular line observations that could resolve protoplanetary disks of ~100
AU both spatially and kinematically would be a useful tool to unambiguously
identify these disks and to determine their kinematical and physical
characteristics. In this work we model the expected line emission from a
protoplanetary disk irradiated by an infalling envelope, addressing the
question of its detectability with subarcsecond resolution. We adopt a
previously determined disk model structure that gives a continuum spectral
energy distribution and a mm intensity spatial distribution that are consistent
with observational constraints of HL Tau. An analysis of the capability of
presently working and projected interferometers at mm and submm wavelengths
shows that molecular transitions of moderate opacity at these wavelengths
(e.g., C17O lines) are good candidates for detecting disk lines at subarcsecond
resolution in the near future. We suggest that, in general, disks of typical
Class I sources will be detectable.Comment: 41 pages, 16 figures. To be published in The Astrophysical Journa
Dimer Decimation and Intricately Nested Localized-Ballistic Phases of Kicked Harper
Dimer decimation scheme is introduced in order to study the kicked quantum
systems exhibiting localization transition. The tight-binding representation of
the model is mapped to a vectorized dimer where an asymptotic dissociation of
the dimer is shown to correspond to the vanishing of the transmission
coefficient thru the system. The method unveils an intricate nesting of
extended and localized phases in two-dimensional parameter space. In addition
to computing transport characteristics with extremely high precision, the
renormalization tools also provide a new method to compute quasienergy
spectrum.Comment: There are five postscript figures. Only half of the figure (3) is
shown to reduce file size. However, missing part is the mirror image of the
part show
Lifetime Measurement of the 6s Level of Rubidium
We present a lifetime measurements of the 6s level of rubidium. We use a
time-correlated single-photon counting technique on two different samples of
rubidium atoms. A vapor cell with variable rubidium density and a sample of
atoms confined and cooled in a magneto-optical trap. The 5P_{1/2} level serves
as the resonant intermediate step for the two step excitation to the 6s level.
We detect the decay of the 6s level through the cascade fluorescence of the
5P_{3/2} level at 780 nm. The two samples have different systematic effects,
but we obtain consistent results that averaged give a lifetime of 45.57 +- 0.17
ns.Comment: 10 pages, 9 figure
A Merger Scenario for the Dynamics of Abell 665
We present new redshift measurements for 55 galaxies in the vicinity of the
rich galaxy cluster Abell 665. When combined with results from the literature,
we have good velocity measurements for a sample of 77 confirmed cluster members
from which we derive the cluster's redshift z=0.1829 +/- 0.0005 and
line-of-sight velocity dispersion of 1390 +/- 120 km/s. Our analysis of the
kinematical and spatial data for the subset of galaxies located within the
central 750 kpc reveals only subtle evidence for substructure and
non-Gaussianity in the velocity distribution. We find that the brightest
cluster member is not moving significantly relative to the other galaxies near
the center of the cluster. On the other hand, our deep ROSAT high resolution
image of A665 shows strong evidence for isophotal twisting and centroid
variation, thereby confirming previous suggestions of significant substructure
in the hot X-ray--emitting intracluster gas. In light of this evident
substructure, we have compared the optical velocity data with N-body
simulations of head-on cluster mergers. We find that a merger of two similar
mass subclusters (mass ratios of 1:1 or 1:2) seen close to the time of
core-crossing produces velocity distributions that are consistent with that
observed.Comment: 30 pages and 7 figures. Accepted by the Astrophysical Journal Full
resoultion figures 1 and 3 available in postscript at
http://www.physics.rutgers.edu/~percy/A665paper.htm
The B1 shock in the L1157 outflow as seen at high spatial resolution
We present high spatial resolution (750 AU at 250 pc) maps of the B1 shock in
the blue lobe of the L1157 outflow in four lines: CS (3-2), CH3OH (3_K-2_K),
HC3N (16-15) and p-H2CO (2_02-3_01). The combined analysis of the morphology
and spectral profiles has shown that the highest velocity gas is confined in a
few compact (~ 5 arcsec) bullets while the lowest velocity gas traces the wall
of the gas cavity excavated by the shock expansion. A large velocity gradient
model applied to the CS (3-2) and (2-1) lines provides an upper limit of 10^6
cm^-3 to the averaged gas density in B1 and a range of 5x10^3< n(H2)< 5x10^5
cm^-3 for the density of the high velocity bullets. The origin of the bullets
is still uncertain: they could be the result of local instabilities produced by
the interaction of the jet with the ambient medium or could be clump already
present in the ambient medium that are excited and accelerated by the expanding
outflow. The column densities of the observed species can be reproduced
qualitatively by the presence in B1 of a C-type shock and only models where the
gas reaches temperatures of at least 4000 K can reproduce the observed HC3N
column density.Comment: 13 pages, 12 figure
- …