21,042 research outputs found

    Lorentz Invariance in Shape Dynamics

    Full text link
    Shape dynamics is a reframing of canonical general relativity in which time reparametrization invariance is "traded" for a local conformal invariance. We explore the emergence of Lorentz invariance in this model in three contexts: as a maximal symmetry, an asymptotic symmetry, and a local invariance.Comment: v2: discussion of light cone structure added; minor typos fixed; 14 page

    The higher grading structure of the WKI hierarchy and the two-component short pulse equation

    Full text link
    A higher grading affine algebraic construction of integrable hierarchies, containing the Wadati-Konno-Ichikawa (WKI) hierarchy as a particular case, is proposed. We show that a two-component generalization of the Sch\" afer-Wayne short pulse equation arises quite naturally from the first negative flow of the WKI hierarchy. Some novel integrable nonautonomous models are also proposed. The conserved charges, both local and nonlocal, are obtained from the Riccati form of the spectral problem. The loop-soliton solutions of the WKI hierarchy are systematically constructed through gauge followed by reciprocal B\" acklund transformation, establishing the precise connection between the whole WKI and AKNS hierarchies. The connection between the short pulse equation with the sine-Gordon model is extended to a correspondence between the two-component short pulse equation and the Lund-Regge model

    The algebraic structure behind the derivative nonlinear Schroedinger equation

    Full text link
    The Kaup-Newell (KN) hierarchy contains the derivative nonlinear Schr\" odinger equation (DNLSE) amongst others interesting and important nonlinear integrable equations. In this paper, a general higher grading affine algebraic construction of integrable hierarchies is proposed and the KN hierarchy is established in terms of a sâ„“^2\hat{s\ell}_2 Kac-Moody algebra and principal gradation. In this form, our spectral problem is linear in the spectral parameter. The positive and negative flows are derived, showing that some interesting physical models arise from the same algebraic structure. For instance, the DNLSE is obtained as the second positive, while the Mikhailov model as the first negative flows, respectively. The equivalence between the latter and the massive Thirring model is explicitly demonstrated also. The algebraic dressing method is employed to construct soliton solutions in a systematic manner for all members of the hierarchy. Finally, the equivalence of the spectral problem introduced in this paper with the usual one, which is quadratic in the spectral parameter, is achieved by setting a particular automorphism of the affine algebra, which maps the homogeneous into principal gradation.Comment: references adde

    Dressing approach to the nonvanishing boundary value problem for the AKNS hierarchy

    Full text link
    We propose an approach to the nonvanishing boundary value problem for integrable hierarchies based on the dressing method. Then we apply the method to the AKNS hierarchy. The solutions are found by introducing appropriate vertex operators that takes into account the boundary conditions.Comment: Published version Proc. Quantum Theory and Symmetries 7 (QTS7)(Prague, Czech Republic, 2011

    The complex Sine-Gordon equation as a symmetry flow of the AKNS Hierarchy

    Full text link
    It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the ``negative'' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector Nonlinear Schrodinger equations appear as lowest negative and second positive flows within the extended hierarchy. This is fully analogous to the well-known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the ``negative'' sector of sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.Comment: 8 pages, LaTeX, typos corrected, references update

    Integrable Field Theories with Defects

    Get PDF
    The structure of integrable field theories in the presence of defects is discussed in terms of boundary functions under the Lagrangian formalism. Explicit examples of bosonic and fermionic theories are considered. In particular, the boundary functions for the super sinh-Gordon model is constructed and shown to generate the Backlund transformations for its soliton solutions.Comment: talk presented at the XVth International Colloquium on Integrable Systems and Quantum Symmetries, to appear in Czechoslovak Journal of Physics (2006

    Supersymmetry for integrable hierarchies on loop superalgebras

    Full text link
    The algebraic approach is employed to formulate N=2 supersymmetry transformations in the context of integrable systems based on loop superalgebras sl^(p+1,p),p≥1\hat{\rm sl}(p+1,p), p \ge 1 with homogeneous gradation. We work with extended integrable hierarchies, which contain supersymmetric AKNS and Lund-Regge sectors. We derive the one-soliton solution for p=1p=1 which solves positive and negative evolution equations of the N=2 supersymmetric model.Comment: Latex, 21 page
    • …
    corecore