252 research outputs found

    SCRN1: A cerebrospinal fluid biomarker correlating with tau in Alzheimer's disease

    Get PDF
    INTRODUCTION: Secernin-1 (SCRN1) is a neuronal protein that co-localizes with neurofibrillary tangles in Alzheimer's disease (AD), but not with tau inclusions in corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), or Pick's disease. METHODS: We measured SCRN1 concentration in cerebrospinal fluid (CSF) using a novel mass spectrometric parallel reaction monitoring method in three clinical cohorts comprising patients with neurochemically characterized AD (n = 25) and controls (n = 28), clinically diagnosed Parkinson's disease (PD; n = 38), multiple system atrophy (MSA; n = 31), PSP (n = 20), CBD (n = 8), healthy controls (n = 37), and neuropathology-confirmed AD (n = 47). RESULTS: CSF SCRN1 was significantly increased in AD (P < 0.01, fold change = 1.4) compared to controls (receiver operating characteristic area under the curve = 0.78) but not in CBD, PSP, PD, or MSA. CSF SCRN1 positively correlated with CSF total tau (R = 0.78, P = 1.1 × 10−13), phosphorylated tau181 (R = 0.64, P = 3.2 × 10−8), and Braak stage and negatively correlated with Mini-Mental State Examination score. DISCUSSION: CSF SCRN1 is a candidate biomarker of AD, reflecting tau pathology

    Exploring C semantics and pointer provenance

    Get PDF
    The semantics of pointers and memory objects in C has been a vexed question for many years. C values cannot be treated as either purely abstract or purely concrete entities: the language exposes their representations, but compiler optimisations rely on analyses that reason about provenance and initialisation status, not just runtime representations. The ISO WG14 standard leaves much of this unclear, and in some respects differs with de facto standard usage - which itself is difficult to investigate. In this paper we explore the possible source-language semantics for memory objects and pointers, in ISO C and in C as it is used and implemented in practice, focussing especially on pointer provenance. We aim to, as far as possible, reconcile the ISO C standard, mainstream compiler behaviour, and the semantics relied on by the corpus of existing C code. We present two coherent proposals, tracking provenance via integers and not; both address many design questions. We highlight some pros and cons and open questions, and illustrate the discussion with a library of test cases. We make our semantics executable as a test oracle, integrating it with the Cerberus semantics for much of the rest of C, which we have made substantially more complete and robust, and equipped with a web-interface GUI. This allows us to experimentally assess our proposals on those test cases. To assess their viability with respect to larger bodies of C code, we analyse the changes required and the resulting behaviour for a port of FreeBSD to CHERI, a research architecture supporting hardware capabilities, which (roughly speaking) traps on the memory safety violations which our proposals deem undefined behaviour. We also develop a new runtime instrumentation tool to detect possible provenance violations in normal C code, and apply it to some of the SPEC benchmarks. We compare our proposal with a source-language variant of the twin-allocation LLVM semantics proposal of Lee et al. Finally, we describe ongoing interactions with WG14, exploring how our proposals could be incorporated into the ISO standard

    Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin

    Get PDF
    Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic tolerance to the immune system. This increased resistance to conventional antibiotic therapy has lead to the search for new antimicrobial therapeutical agents. Farnesol, a quorum-sensing molecule in Candida albicans, has been described as impairing growth of several different microorganisms and we have previously shown its potential as an adjuvant in antimicrobial therapy against S. epidermidis. However, its mechanism of action in S. epidermidis is not fully known. In this work we better elucidate the role of farnesol against S: epidermidis biofilms using confocal laser scanning microscopy (CLSM). Findings 24 h biofilms were exposed to farnesol, vancomycin or rifampicin and were analysed by CLSM, after stained with a Live/Dead stain, a known indicator of cell viability, related with cell membrane integrity. Biofilms were also disrupted by sonication and viable and cultivable cells were quantified by colony forming units (CFU) plating. Farnesol showed a similar effect as vancomycin, both causing little reduction of cell viability but at the same time inducing significant changes in the biofilm structure. On the other hand, rifampicin showed a distinct action in S. epidermidis biofilms, by killing a significant proportion of biofilm bacteria. Conclusions While farnesol is not very efficient at killing biofilm bacteria, it damages cell membrane, as determined by the live/dead staining, in a similar way as vancomycin.. Furthermore, farnesol might induce biofilm detachment, as determined by the reduced biofilm biomass, which can partially explain the previous findings regarding its role as a possible chemotherapy adjuvant.(undefined

    Insulin signaling pathways in a patient with insulin resistance of difficult management - a case report

    Get PDF
    Insulin signalling pathways were investigated in a 33 year-old woman with immunologic insulin resistance. Her past medical history was remarkable for intermittent use of insulin and allergic reactions to several drugs, and measure of plasma anti-insulin antibodies level corroborated the clinical suspicion of immune mediated insulin resistance (8074 nU/ml - RIA - Ref value: <60). Treatment with several immunosuppressive regimens was tried, however the results were disappointing. Possible subcellular mechanisms of insulin resistance were investigated by performing analysis of insulin receptor and post receptor signaling in skeletal muscle biopsy. The expression of insulin receptor (IR), insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT-4) was evaluated in total extract from muscle tissue by Western blotting. Basal IR, IRS-1 and GLUT-4 expression was detected, however receptor autophosphorylation was not observed. A study of translocation of GLUT-4 to plasma membrane showed that tissue presented low levels of membrane-associated GLUT-4. When in vitro stimulation was undertaken, tissue was capable to be responsive to insulin. Our results suggest that even though IR expression was normally occurring, IR β-subunit tyrosine kinase activity in muscle was down-regulated leading to alterations in insulin post receptor signaling. Consistent with normal insulin receptor and post receptor signaling, our results were compatible with decreased insulin binding to IR probably due to neutralization by anti-insulin antibodies. In conclusion, this patient has immunologic insulin resistance and treatment should be based on immunosuppressive drugs as tolerated

    Effect of farnesol on planktonic and biofilm cells of Staphylococcus epidermidis

    Get PDF
    Staphylococcus epidermidis is now amongst the most important pathogenic agents responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of farnesol, a natural sesquiterpenoid, on Staphylococcus epidermidis planktonic and biofilm cells. Farnesol displayed a significant inhibitory effect on planktonic cells. Small concentrations (100 μM) were sufficient to exhibit antibacterial effect on these cells. In biofilm cells the effect of farnesol was not so pronounced and it seems to be strongly dependent on the cells metabolic activity and amount of matrix. Interestingly, the effect of farnesol at 200 μM was similar to the effect of vancomycin at peak serum concentration either in planktonic or biofilm cells. Overall, the results indicate a potential antibacterial effect of farnesol against S. epidermidis, and therefore the possible action of this molecule on the prevention of S. epidermidis related infections.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/32126/2006, SFRH/BPD/26803/200

    Superoxide Dismutase 1 and tgSOD1G93A Mouse Spinal Cord Seed Fibrils, Suggesting a Propagative Cell Death Mechanism in Amyotrophic Lateral Sclerosis

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that specifically affects motor neurons and leads to a progressive and ultimately fatal loss of function, resulting in death typically within 3 to 5 years of diagnosis. The disease starts with a focal centre of weakness, such as one limb, and appears to spread to other parts of the body. Mutations in superoxide dismutase 1 (SOD1) are known to cause disease and it is generally accepted they lead to pathology not by loss of enzymatic activity but by gain of some unknown toxic function(s). Although different mutations lead to varying tendencies of SOD1 to aggregate, we suggest abnormal proteins share a common misfolding pathway that leads to the formation of amyloid fibrils.Methodology/Principal Findings: Here we demonstrate that misfolding of superoxide dismutase 1 leads to the formation of amyloid fibrils associated with seeding activity, which can accelerate the formation of new fibrils in an autocatalytic cascade. The time limiting event is nucleation to form a stable protein "seed" before a rapid linear polymerisation results in amyloid fibrils analogous to other protein misfolding disorders. This phenomenon was not confined to fibrils of recombinant protein as here we show, for the first time, that spinal cord homogenates obtained from a transgenic mouse model that overexpresses mutant human superoxide dismutase 1 (the TgSOD1(G93A) mouse) also contain amyloid seeds that accelerate the formation of new fibrils in both wildtype and mutant SOD1 protein in vitro.Conclusions/Significance: These findings provide new insights into ALS disease mechanism and in particular a mechanism that could account for the spread of pathology throughout the nervous system. This model of disease spread, which has analogies to other protein misfolding disorders such as prion disease, also suggests it may be possible to design assays for therapeutics that can inhibit fibril propagation and hence, possibly, disease progression
    corecore