206 research outputs found

    Highly Homologous Filamin Polypeptides Have Different Distributions in Avian Slow and Fast Muscle Fibers

    Get PDF
    The high molecular weight actin-binding protein filamin is located at the periphery of the Z disk in the fast adult chicken pectoral muscle (Gomer, R. H., and E. Lazarides, 1981, Cell, 23: 524-532). In contrast, we have found that in the slow anterior latissimus dorsi (ALD) muscle, filamin was additionally located throughout the l band as judged by immunofluorescence with affinity-purified antibodies on myofibrils and cryosections. The Z line proteins desmin and alpha-actinin, however, had the same distribution in ALD as they do in pectoral muscle. Quantitation of filamin and actin from the two muscle types showed that there was approximately 10 times as much filamin per actin in ALD myofibrils as in pectoral myofibrils. Filamin immunoprecipitated from ALD had an electrophoretic mobility in SDS polyacrylamide gels identical to that of pectoral myofibril filamin and slightly greater than that of chicken gizzard filamin. Two-dimensional peptide maps of filamin immunoprecipitated and labeled with ^(125)I showed that ALD myofibril filamin was virtually identical to pectoral myofibril filamin and was distinct from chicken gizzard filamin

    Cell-density sensing: Come on inside and tell us about it

    Get PDF
    AbstractThe developmental pathway chosen by a Bacillus subtilis cell is influenced by the local cell density. To sense cell density, the cell monitors at least three different secreted signal peptides, two of which are detected by a new type of transduction mechanism involving their specific transport into the cell

    The Cell Density Factor CMF Regulates the Chemoattractant Receptor cAR1 in Dictyostelium

    Get PDF
    Starving Dictyostelium cells aggregate by chemotaxis to cAMP when a secreted protein called conditioned medium factor (CMF) reaches a threshold concentration. Cells expressing CMF antisense mRNA fail to aggregate and do not transduce signals from the cAMP receptor. Signal transduction and aggregation are restored by adding recombinant CMF. We show here that two other cAMP-induced events, the formation of a slow dissociating form of the cAMP receptor and the loss of ligand binding, which is the first step of ligand-induced receptor sequestration, also require CMF. Vegetative cells have very few CMF and cAMP receptors, while starved cells possess ~40,000 receptors for CMF and cAMP. Transformants overexpressing the cAMP receptor gene cAR1 show a 10-fold increase of [3H]cAMP binding and a similar increase of [125I]CMF binding; disruption of the cAR1 gene abolishes both cAMP and CMF binding. In wild-type cells, downregulation of cAR1 with high levels of cAMP also downregulates CMF binding, and CMF similarly downregulates cAMP and CMF binding. This suggests that the cAMP binding and CMF binding are closely linked. Binding of ~200 molecules of CMF to starved cells affects the affinity of the majority of the cAR1 cAMP receptors within 2 min, indicating that an amplifying mechanism allows one activated CMF receptor to regulate many cARs. In cells lacking the G-protein Ξ² subunit, cAMP induces a loss of cAMP binding, but not CMF binding, while CMF induces a reduction of CMF binding without affecting cAMP binding, suggesting that the linkage of the cell density-sensing CMF receptor and the chemoattractant cAMP receptor is through a G-protein.

    Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum

    Get PDF
    Neuronal ceroid lipofuscinosis (NCL) is the most common childhood-onset neurodegenerative disease. NCL is inevitably fatal, and there is currently no treatment available. Children with NCL show a progressive decline in movement, vision and mental abilities, and an accumulation of autofluorescent deposits in neurons and other cell types. Late-infantile NCL is caused by mutations in the lysosomal protease tripeptidyl peptidase 1 (TPP1). TPP1 cleaves tripeptides from the N-terminus of proteins in vitro, but little is known about the physiological function of TPP1. TPP1 shows wide conservation in vertebrates but it is not found in Drosophila, Caenorhabditis elegans or Saccharomyces cerevisiae. Here, we characterize ddTpp1, a TPP1 ortholog present in the social amoeba Dictyostelium discoideum. Lysates from cells lacking ddTpp1 show a reduced but not abolished ability to cleave a TPP1 substrate, suggesting that other Dictyostelium enzymes can perform this cleavage. ddTpp1 and human TPP1 localize to the lysosome in Dictyostelium, indicating conserved function and trafficking. Cells that lack ddTpp1 show precocious multicellular development and a reduced ability to form spores during development. When cultured in autophagy-stimulating conditions, cells lacking ddTpp1 rapidly decrease in size and are less viable than wild-type cells, suggesting that one function of ddTpp1 could be to limit autophagy. Cells that lack ddTpp1 exhibit strongly impaired development in the presence of the lysosome-perturbing drug chloroquine, and this phenotype can be suppressed through a secondary mutation in the gene that we name suppressor of tpp1βˆ’ A (stpA), which encodes a protein with some similarity to mammalian oxysterol-binding proteins (OSBPs). Taken together, these results suggest that targeting specific proteins could be a viable way to suppress the effects of loss of TPP1 function

    Pirfenidone treatment of idiopathic pulmonary fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a discrete clinicopathologic entity defined by the presence of usual interstitial pneumonia on high-resolution CT scan and/or open lung biopsy and the absence of an alternate diagnosis or exposure explaining these findings. There are currently no FDA-approved therapies available to treat this disease, and the 5-year mortality is ∼80%. The pyridone derivative pirfenidone has been studied extensively as a possible therapeutic agent for use in this deadly disease. This review will present the unique clinical features and management issues encountered by physicians caring for IPF patients, including the poor response to conventional therapy. The biochemistry and preclinical efficacy of pirfenidone will be discussed along with a comprehensive review of the clinical efficacy, safety, and side effects and patient-centered foci such as quality of life and tolerability. It is hoped that this information will lend insight into the complex issues surrounding the use of pirfenidone in IPF and lead to further investigation of this agent as a possible therapy in this devastating disease

    The Development of Serum Amyloid P as a Possible Therapeutic

    Get PDF
    Pentraxins such as serum amyloid P (SAP; also known as PTX2) regulate several aspects of the innate immune system. SAP inhibits the differentiation of monocyte-derived fibroblast-like cells called fibrocytes, promotes the formation of immuno-regulatory macrophages, and inhibits neutrophil adhesion to extracellular matrix proteins. In this minireview, we describe how these effects of SAP have led to its possible use as a therapeutic, and how modulating SAP effects might be used for other therapeutics. Fibrosing diseases such as pulmonary fibrosis, cardiac fibrosis, liver fibrosis, and renal fibrosis are associated with 30–45% of deaths in the US. Fibrosis involves both fibrocyte differentiation and profibrotic macrophage differentiation, and possibly because SAP inhibits both of these processes, in 9 different animal models, SAP inhibited fibrosis. In Phase 1B and Phase 2 clinical trials, SAP injections reduced the decline in lung function in pulmonary fibrosis patients, and in a small Phase 2 trial SAP injections reduced fibrosis in myelofibrosis patients. Acute respiratory distress syndrome/ acute lung injury (ARDS/ALI) involves the accumulation of neutrophils in the lungs, and possibly because SAP inhibits neutrophil adhesion, SAP injections reduced the severity of ARDS in an animal model. Conversely, depleting SAP is a potential therapeutic for amyloidosis, topically removing SAP from wound fluid speeds wound healing in animal models, and blocking SAP binding to one of its receptors makes cultured macrophages more aggressive toward tuberculosis bacteria. These results suggest that modulating pentraxin signaling might be useful for a variety of diseases

    Serum amyloid P inhibits granulocyte adhesion

    Get PDF
    Background The extravasation of granulocytes (such as neutrophils) at a site of inflammation is a key aspect of the innate immune system. Signals from the site of inflammation upregulate granulocyte adhesion to the endothelium to initiate extravasation, and also enhance granulocyte adhesion to extracellular matrix proteins to facilitate granulocyte movement through the inflamed tissue. During the resolution of inflammation, other signals inhibit granulocyte adhesion to slow and ultimately stop granulocyte influx into the tissue. In a variety of inflammatory diseases such as acute respiratory distress syndrome, an excess infiltration of granulocytes into a tissue causes undesired collateral damage, and being able to reduce granulocyte adhesion and influx could reduce this damage. Results We found that serum amyloid P (SAP), a constitutive protein component of the blood, inhibits granulocyte spreading and granulocyte adhesion to extracellular matrix components. This indicates that in addition to granulocyte adhesion inhibitors that are secreted during the resolution of inflammation, a granulocyte adhesion inhibitor is present at all times in the blood. Although SAP affects adhesion, it does not affect the granulocyte adhesion molecules CD11b, CD62L, CD18, or CD44. SAP also has no effect on the production of hydrogen peroxide by resting or stimulated granulocytes, or N-formyl-methionine-leucine-phenylalanine (fMLP)-induced granulocyte migration. In mice treated with intratracheal bleomycin to induce granulocyte accumulation in the lungs, SAP injections reduced the number of granulocytes in the lungs. Conclusions We found that SAP, a constitutive component of blood, is a granulocyte adhesion inhibitor. We hypothesize that SAP allows granulocytes to sense whether they are in the blood or in a tissue

    Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Dictyostelium </it>cells secrete the proteins AprA and CfaD. Cells lacking either AprA or CfaD proliferate faster than wild type, while AprA or CfaD overexpressor cells proliferate slowly, indicating that AprA and CfaD are autocrine factors that repress proliferation. CfaD interacts with AprA and requires the presence of AprA to slow proliferation. To determine if CfaD is necessary for the ability of AprA to slow proliferation, whether AprA binds to cells, and if so whether the binding requires the presence of CfaD, we examined the binding and effect on proliferation of recombinant AprA.</p> <p>Results</p> <p>We find that the extracellular accumulation of AprA increases with cell density and reaches a concentration of 0.3 ΞΌg/ml near a stationary cell density. When added to wild-type or <it>aprA</it><sup>- </sup>cells, recombinant AprA (rAprA) significantly slows proliferation at 0.1 ΞΌg/ml and higher concentrations. From 4 to 64 ΞΌg/ml, the effect of rAprA is at a plateau, slowing but not stopping proliferation. The proliferation-inhibiting activity of rAprA is roughly the same as that of native AprA in conditioned growth medium. Proliferating <it>aprA</it><sup>- </sup>cells show saturable binding of rAprA to 92,000 Β± 11,000 cell-surface receptors with a <it>K</it><sub><it>D </it></sub>of 0.03 Β± 0.02 ΞΌg/ml. There appears to be one class of binding site, and no apparent cooperativity. Native AprA inhibits the binding of rAprA to <it>aprA</it><sup>- </sup>cells with a <it>K</it><sub><it>i </it></sub>of 0.03 ΞΌg/ml, suggesting that the binding kinetics of rAprA are similar to those of native AprA. The proliferation of cells lacking CrlA, a cAMP receptor-like protein, or cells lacking CfaD are not affected by rAprA. Surprisingly, both cell types still bind rAprA.</p> <p>Conclusion</p> <p>Together, the data suggest that AprA functions as an autocrine proliferation-inhibiting factor by binding to cell surface receptors. Although AprA requires CfaD for activity, it does not require CfaD to bind to cells, suggesting the possibility that cells have an AprA receptor and a CfaD receptor, and activation of both receptors is required to slow proliferation. We previously found that <it>crlA</it><sup>- </sup>cells are sensitive to CfaD. Combined with the results presented here, this suggests that CrlA is not the AprA or CfaD receptor, and may be the receptor for an unknown third factor that is required for AprA and CfaD activity.</p
    • …
    corecore