2 research outputs found

    Properties and influence of microstructure and crystal defects in Fe2_2VAl modified by laser surface remelting

    Full text link
    Laser surface remelting can be used to manipulate the microstructure of cast material. Here, we present a detailed analysis of the microstructure of Fe2_2VAl following laser surface remelting. Within the melt pool, elongated grains grow nearly epitaxially from the heat-affected zone. These grains are separated by low-angle grain boundaries with 1{\deg}-5{\deg} misorientations. Segregation of vanadium, carbon, and nitrogen at grain boundaries and dislocations is observed using atom probe tomography. The local electrical resistivity was measured by an in-situ four-point-probe technique. A smaller increase in electrical resistivity is observed at these low-angle grain boundaries compared to high-angle grain boundaries in a cast sample. This indicates that grain boundary engineering could potentially be used to manipulate thermoelectric properties

    Microstructure of a spark-plasma-sintered Fe2VAl-type Heusler alloy for thermoelectric application

    Full text link
    The influence of microstructure on thermoelectricity is increasingly recognized. Approaches for microstructural engineering can hence be exploited to enhance thermoelectric performance, particularly through manipulating crystalline defects, their structure, and composition. Here, we focus on a full-Heusler Fe2VAl-based compound that is one of the most promising thermoelectric materials containing only Earth-abundant, non-toxic elements. A Fe2VTa0.05Al0.95 cast alloy was atomized under a nitrogen-rich atmosphere to induce nitride precipitation. Nanometer- to micrometer-scale microstructural investigations by advanced scanning electron microscopy and atom probe tomography (APT) are performed on the powder first and then on the material consolidated by spark-plasma sintering for an increasing time. APT reveals an unexpected pick-up of additional impurities from atomization, namely W and Mo. The microstructure is then correlated with local and global measurements of the thermoelectric properties. At grain boundaries, segregation and precipitation locally reduce the electrical resistivity, as evidenced by in-situ four-point probe measurements. The final microstructure contains a hierarchy of structural defects, including individual point defects, dislocations, grain boundaries, and precipitates, that allow for a strong decrease in thermal conductivity. In combination, these effects provide an appreciable increase in thermoelectric performance
    corecore