3 research outputs found

    Migration of droplets driven by thermocapillary effects

    Get PDF
    Se estudia el desplazamiento de gotas, en dos dimensiones y bajo condiciones de mojabilidad parcial, ubicadas sobre un sustrato calentado en forma no uniforme. Se resuelve la ecuación que gobierna el perfil de altura de la gota, bajo las hipótesis de lubricación. El modelado incluye el efecto de la mojabilidad parcial (ángulo de contacto no nulo) mediante un termino que representa las fuerzas intermoleculares entre el sustrato y el líquido. En vez de asumir una forma fija para la forma de la gota, como en trabajos previos, aquí se resuelve la evolución temporal del perfil de altura. Hemos identificado dos regímenes de flujo y una zona de transición.We study the thermocapillary migration of two dimensional droplets of partially wetting liquids on a nonuniform heated substrate. An equation for the thickness profile of the droplet is solved under the hypothesis of the lubrication theory. The model includes the effect of a non-zero contact angle introduced through a disjoiningconjoining pressure term. Instead of assuming a fixed shape for the droplet, as in previous works, here we allow the droplet to change its profile with time. We identify and describe two different regimes and a transition zone.Fil: Gomba, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; ArgentinaFil: Homsy, G. M.. University of California; Estados Unido

    Stokes flow paths separation and recirculation cells in X-junctions of varying angle

    Get PDF
    Fluid and solute transfer in X-junctions between straight channels is shown to depend critically on the junction angle in the Stokes flow regime. Experimentally, water and a water-dye solution are injected at equal flow rates in two facing channels of the junction: Planar Laser Induced fluorescence (PLIF) measurements show that the largest part of each injected fluid "bounces back" preferentially into the outlet channel at the lowest angle to the injection; this is opposite to the inertial case and requires a high curvature of the corresponding streamlines. The proportion of this fluid in the other channel decreases from 50% at 90\degree to zero at a threshold angle. These counterintuitive features reflect the minimization of energy dissipation for Stokes flows. Finite elements numerical simulations of a 2D Stokes flow of equivalent geometry con rm these results and show that, below the threshold angle 33.8\degree recirculation cells are present in the center part of the junction and separate the two injected flows of the two solutions. Reducing further leads to the appearance of new recirculation cells with lower flow velocities

    Thermocapillary migration of droplets under molecular and gravitational forces

    No full text
    We study the thermocapillary migration of two-dimensional droplets of partially wetting liquids on a non-uniformly heated surface. The effect of a non-zero contact angle is imposed through a disjoining-conjoining pressure term. The numerical results for two different molecular interactions are compared: on the one hand, London-van der Waals and ionic-electrostatics molecular interactions that account for polar liquids; on the other hand, long-and short-range molecular forces that model molecular interactions of non-polar fluids. In addition, the effect of gravity on the velocity of the drop is analysed. We find that for small contact angles, the long-Time dynamics is independent of the molecular potential, and the footprint of the droplet increases with the square root of time. For intermediate contact angles we observe that polar droplets are more likely to break up into smaller volumes than non-polar ones. A linear stability analysis allows us to predict the number of droplets after breakup occurs. In this regime, the effect of gravity is stabilizing: it reduces the growth rates of the unstable modes and increases the shortest unstable wavelength. When breakup is not observed, the droplet moves steadily with a profile that consists in a capillary ridge followed by a film of constant thickness, for which we find power law dependencies with the cross-sectional area of the droplet, the contact angle and the temperature gradients. For large contact angles, non-polar liquids move faster than polar ones, and the velocity is proportional to the Marangoni stress. We find power law dependencies for the velocity for the different regimes of flow. The numerical results allow us to shed light on experimental facts such as the origin of the elongation of droplets and the existence of saturation velocity.Fil: Mac Intyre, Jonatan Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Gomba, Juan Manuel. Universidad Nacional del Centro de la Provincia de Buenos Aires; ArgentinaFil: Perazzo, Carlos Alberto. Universidad Favaloro; ArgentinaFil: Correa, Pablo Germán. Universidad Nacional del Centro de la Provincia de Buenos Aires; ArgentinaFil: Sellier, M.. University of Canterbury; Nueva Zeland
    corecore