31 research outputs found

    Biological indicators, genetic polymorphism and expression in Aspergillus flavus under copper mediated stress

    Get PDF
    AbstractFungi are considered model organisms for studying stress response and metal adaptation for both biotechnological and environmental purposes. In a previous study, copper was added in concentrations 1 and 10mM to Aspergillus flavus to induce laccase production for bioremediation, but using high concentrations of copper resulted in laccase inhibition despite the increase in bioremediation. In this study, the same copper sulfate was added and some oxidative biomarkers and antioxidative defense enzymes were assessed for stressed cultures of both copper and gamma radiation which was used as a positive stress inducer. The increase in copper concentrations resulted in an increase in superoxide dismutase enzyme activity, lipid peroxidation and protein carbonylation. On the other hand, catalase was inhibited by the addition of both copper concentrations, but exposure to gamma radiation resulted in an increased copper production. Glutathione peroxidase showed variation under stress, while both reduced glutathione and mycelial growth decreased in copper amended cultures. There was an increase in total endogenous carbohydrates. The main location of copper at the end of the incubation period seemed to reside in the cytosolic fraction of the fungus as detected by atomic absorption spectrometry. Genetic polymorphism was evident in the presence of copper as detected by RAPD-PCR. The expression of both laccase and superoxide dismutase suggest that each has a specific role in bioremediation, depending on the added copper concentration

    Characterization of a biosurfactant producing electroactive Bacillus sp. for enhanced Microbial Fuel Cell dye decolourisation

    Get PDF
    A biosurfactant producing Gram positive bacterium isolated from anodic biofilm of textile wastewater fed MFC was identified as Bacillus sp. MFC (Accession number: MT322244). Scanning Electron Microscopy of the bacterium showed appendages, the bacterium forms biofilm on Congo red agar medium. The obtained results showed that the addition of 5 mg/l endogenous biosurfactant to the bacterial cells resulted in 19-fold increase in bacterial surface-bound exopolysaccharides (EPS) and 1.94-fold increase in biofilm. However, when the biosurfactant concentration increased to 20 and 40 mg/l, EPS and biofilm decreased and the cells lost their colony forming ability. The dielectric properties of the bacterial cells showed increase in conductivity and relative permittivity with increasing biosurfactant concentrations. The shape of the voltammogram currents peak, their location and Electrochemical impedance spectroscopy (EIS) suggest the involvement of biofilm as direct electron transfer pathway. The average voltage obtained was 0.65 V as compared to 0.45 V for the control MFC. Decolourization was tested for Congo red in a double chamber Microbial Fuel Cell (MFC), the results showed 2-fold increase in decolourization when biosurfactant is added post biofilm formation. The results confirm that Bacillus sp. MFC possess electrogenic properties and that adding low concentrations of endogenous biosurfactant to 24 h biofilm accelerates electron transfer by inducing perforations in the cell wall and increasing EPS as an electron transfer transient medium. Therefore, MFC performance can be enhanced

    The role of riboflavin in decolourisation of Congo red and bioelectricity production using Shewanella oneidensis-MR1 under MFC and non-MFC conditions

    Get PDF
    Dissimilatory metal reducing bacteria can exchange electrons extracellularly and hold great promise for their use in simultaneous wastewater treatment and electricity production. This study investigated the role of riboflavin, an electron carrier, in the decolourisation of Congo red in microbial fuel cells (MFCs) using Shewanella oneidensis MR-1 as a model organism. The contribution of the membrane-bound protein MtrC to the decolourisation process was also investigated. Within the range of riboflavin concentrations tested, 20 µM was found to be the best with >95% of the dye (initial concentration 200 mg/L) decolourised in MFCs within 50 h compared to 90% in the case where no riboflavin was added. The corresponding maximum power density was 45 mW/m2. There was no significant difference in the overall decolourisation efficiencies of Shewanela oneidensis MR-1 ΔMtrC mutants compared to the wild type. However, in terms of power production the mutant produced more power (Pmax 76 mW/m2) compared to the wild type (Pmax 46 mW/m2) which was attributed to higher levels of riboflavin secreted in solution. Decolourisation efficiencies in non-MFC systems (anaerobic bottles) were similar to those under MFC systems indicating that electricity generation in MFCs does not impair dye decolourisation efficiencies. The results suggest that riboflavin enhances both decolourisation of dyes and simultaneous electricity production in MFCs

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore