54 research outputs found

    Intrinsic Dynamic Shape Prior for Fast, Sequential and Dense Non-Rigid Structure from Motion with Detection of Temporally-Disjoint Rigidity

    No full text
    While dense non-rigid structure from motion (NRSfM) has been extensively studied from the perspective of the reconstructability problem over the recent years, almost no attempts have been undertaken to bring it into the practical realm. The reasons for the slow dissemination are the severe ill-posedness, high sensitivity to motion and deformation cues and the difficulty to obtain reliable point tracks in the vast majority of practical scenarios. To fill this gap, we propose a hybrid approach that extracts prior shape knowledge from an input sequence with NRSfM and uses it as a dynamic shape prior for sequential surface recovery in scenarios with recurrence. Our Dynamic Shape Prior Reconstruction (DSPR) method can be combined with existing dense NRSfM techniques while its energy functional is optimised with stochastic gradient descent at real-time rates for new incoming point tracks. The proposed versatile framework with a new core NRSfM approach outperforms several other methods in the ability to handle inaccurate and noisy point tracks, provided we have access to a representative (in terms of the deformation variety) image sequence. Comprehensive experiments highlight convergence properties and the accuracy of DSPR under different disturbing effects. We also perform a joint study of tracking and reconstruction and show applications to shape compression and heart reconstruction under occlusions. We achieve state-of-the-art metrics (accuracy and compression ratios) in different scenarios

    A Quantum Computational Approach to Correspondence Problems on Point Sets

    Get PDF
    Modern adiabatic quantum computers (AQC) are already used to solve difficult combinatorial optimisation problems in various domains of science. Currently, only a few applications of AQC in computer vision have been demonstrated. We review modern AQC and derive the first algorithm for transformation estimation and point set alignment suitable for AQC. Our algorithm has a subquadratic computational complexity of state preparation. We perform a systematic experimental analysis of the proposed approach and show several examples of successful point set alignment by simulated sampling. With this paper, we hope to boost the research on AQC for computer vision

    Fast Simultaneous Gravitational Alignment of Multiple Point Sets

    Get PDF

    Generation of Truly Random Numbers on a Quantum Annealer

    Get PDF

    HumanGAN: A Generative Model of Humans Images

    Get PDF
    Generative adversarial networks achieve great performance in photorealistic image synthesis in various domains, including human images. However, they usually employ latent vectors that encode the sampled outputs globally. This does not allow convenient control of semantically-relevant individual parts of the image, and is not able to draw samples that only differ in partial aspects, such as clothing style. We address these limitations and present a generative model for images of dressed humans offering control over pose, local body part appearance and garment style. This is the first method to solve various aspects of human image generation such as global appearance sampling, pose transfer, parts and garment transfer, and parts sampling jointly in a unified framework. As our model encodes part-based latent appearance vectors in a normalized pose-independent space and warps them to different poses, it preserves body and clothing appearance under varying posture. Experiments show that our flexible and general generative method outperforms task-specific baselines for pose-conditioned image generation, pose transfer and part sampling in terms of realism and output resolution

    Intrinsic Dynamic Shape Prior for Dense Non-Rigid Structure from Motion

    Get PDF

    EventNeRF: Neural Radiance Fields from a Single Colour Event Camera

    Get PDF
    Asynchronously operating event cameras find many applications due to theirhigh dynamic range, no motion blur, low latency and low data bandwidth. Thefield has seen remarkable progress during the last few years, and existingevent-based 3D reconstruction approaches recover sparse point clouds of thescene. However, such sparsity is a limiting factor in many cases, especially incomputer vision and graphics, that has not been addressed satisfactorily sofar. Accordingly, this paper proposes the first approach for 3D-consistent,dense and photorealistic novel view synthesis using just a single colour eventstream as input. At the core of our method is a neural radiance field trainedentirely in a self-supervised manner from events while preserving the originalresolution of the colour event channels. Next, our ray sampling strategy istailored to events and allows for data-efficient training. At test, our methodproduces results in the RGB space at unprecedented quality. We evaluate ourmethod qualitatively and quantitatively on several challenging synthetic andreal scenes and show that it produces significantly denser and more visuallyappealing renderings than the existing methods. We also demonstrate robustnessin challenging scenarios with fast motion and under low lighting conditions. Wewill release our dataset and our source code to facilitate the research field,see https://4dqv.mpi-inf.mpg.de/EventNeRF/.<br

    Style and Pose Control for Image Synthesis of Humans from a Single Monocular View

    Get PDF
    Photo-realistic re-rendering of a human from a single image with explicit control over body pose, shape and appearance enables a wide range of applications, such as human appearance transfer, virtual try-on, motion imitation, and novel view synthesis. While significant progress has been made in this direction using learning-based image generation tools, such as GANs, existing approaches yield noticeable artefacts such as blurring of fine details, unrealistic distortions of the body parts and garments as well as severe changes of the textures. We, therefore, propose a new method for synthesising photo-realistic human images with explicit control over pose and part-based appearance, i.e., StylePoseGAN, where we extend a non-controllable generator to accept conditioning of pose and appearance separately. Our network can be trained in a fully supervised way with human images to disentangle pose, appearance and body parts, and it significantly outperforms existing single image re-rendering methods. Our disentangled representation opens up further applications such as garment transfer, motion transfer, virtual try-on, head (identity) swap and appearance interpolation. StylePoseGAN achieves state-of-the-art image generation fidelity on common perceptual metrics compared to the current best-performing methods and convinces in a comprehensive user study

    Quantum Permutation Synchronization

    Get PDF

    Quantum Permutation Synchronization

    Get PDF
    We present QuantumSync, the first quantum algorithm for solving a synchronization problem in the context of computer vision. In particular, we focus on permutation synchronization which involves solving a non-convex optimization problem in discrete variables. We start by formulating synchronization into a quadratic unconstrained binary optimization problem (QUBO). While such formulation respects the binary nature of the problem, ensuring that the result is a set of permutations requires extra care. Hence, we: (i) show how to insert permutation constraints into a QUBO problem and (ii) solve the constrained QUBO problem on the current generation of the adiabatic quantum computers D-Wave. Thanks to the quantum annealing, we guarantee global optimality with high probability while sampling the energy landscape to yield confidence estimates. Our proof-of-concepts realization on the adiabatic D-Wave computer demonstrates that quantum machines offer a promising way to solve the prevalent yet difficult synchronization problems
    • …
    corecore