85 research outputs found

    Modifying catalytically the soot morphology and nanostructure in diesel exhaust: Influence of silver De-NOx catalyst (Ag/Al2O3)

    Get PDF
    The influence of an Ag/Al2O3 HC-SCR catalyst on the morphological and nanostructural aspects of the exhaust particulate matter (PM) generated during the combustion of diesel fuel and a glycol ether–diesel fuel blend was addressed in this research work. In addition, the impact of in-cylinder fuel post injections (FPI) on the particulate formation pathway and on the catalytic de-NOx efficiency was also studied. The tests were carried at low exhaust temperatures in the absence and presence of small amounts of hydrogen (H2). It is concluded that in the absence of H2, the catalyst does not modify the primary particle size (dp0) of the soot aggregates, while the aggregation of the soot particles throughout the catalyst channels is the main governing mechanism. The catalyst influence on the particulate structure was evident when H2 was introduced, with smaller dp0 seen downstream of the catalyst, indicating that despite the short residence time of the PM within the catalyst bed, the soot particles were partially oxidised. The use of late FPI reduces the exhaust PM level and delivers sufficient HC:NOx ratios that improves the catalyst activity up to a maximum of 80% NOx conversion, with no sign of catalyst deactivation when H2 (500 ppm) was injected. Furthermore, it is suggested that along with oxidising part of the particles produced during the main fuel injection phase, late FPI can also produce, to a lesser extent, some additional soot with a less matured structure, resulting on average in less ordered particles being emitted into the exhaust stream. This work shows that in modern diesel engines, a silver catalyst can alter the soot structure in the exhaust in a way that can ease the diesel particulate filter (DPF) regeneration cycles, improve its filtration efficiency and help in effectively reducing the tailpipe NOx emissions. For the catalyst to perform these functions, multiple in-cylinder fuel injection strategies (late FPI) combined with small amounts of hydrogen addition to the exhaust are required

    Frequency-Selective Surface-Based MIMO Antenna Array for 5G Millimeter-Wave Applications

    Get PDF
    In this paper, a radiating element consisting of a modified circular patch is proposed for MIMO arrays for 5G millimeter-wave applications. The radiating elements in the proposed 2 × 2 MIMO antenna array are orthogonally configured relative to each other to mitigate mutual coupling that would otherwise degrade the performance of the MIMO system. The MIMO array was fabricated on Rogers RT/Duroid high-frequency substrate with a dielectric constant of 2.2, a thickness of 0.8 mm, and a loss tangent of 0.0009. The individual antenna in the array has a measured impedance bandwidth of 1.6 GHz from 27.25 to 28.85 GHz for S11 ≀ −10 dB, and the MIMO array has a gain of 7.2 dBi at 28 GHz with inter radiator isolation greater than 26 dB. The gain of the MIMO array was increased by introducing frequency-selective surface (FSS) consisting of 7 × 7 array of unit cells comprising rectangular C-shaped resonators, with one embedded inside the other with a central crisscross slotted patch. With the FSS, the gain of the MIMO array increased to 8.6 dBi at 28 GHz. The radiation from the array is directional and perpendicular to the plain of the MIMO array. Owing to the low coupling between the radiating elements in the MIMO array, its Envelope Correlation Coefficient (ECC) is less than 0.002, and its diversity gain (DG) is better than 9.99 dB in the 5G operating band centered at 28 GHz between 26.5 GHz and 29.5 GHz

    Silicon microfabricated reactor for operando XAS/DRIFTS studies of heterogeneous catalytic reactions

    Get PDF
    Operando X-ray absorption spectroscopy (XAS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry (MS) provide complementary information on the catalyst structure, surface reaction mechanisms and activity relationships. The powerful combination of the techniques has been the driving force to design and engineer suitable spectroscopic operando reactors that can mitigate limitations inherent to conventional reaction cells and facilitate experiments under kinetic regimes. Microreactors have recently emerged as effective spectroscopic operando cells due to their plug-flow type operation with no dead volume and negligible mass and heat transfer resistances. Here we present a novel microfabricated reactor that can be used for both operando XAS and DRIFTS studies. The reactor has a glass–silicon–glass sandwich-like structure with a reaction channel (3000 ÎŒm × 600 ÎŒm; width × depth) packed with a catalyst bed (ca. 25 mg) and placed sideways to the X-ray beam, while the infrared beam illuminates the catalyst bed from the top. The outlet of the reactor is connected to MS for continuous monitoring of the reactor effluent. The feasibility of the microreactor is demonstrated by conducting two reactions: i) combustion of methane over 2 wt% Pd/Al2O3 studied by operando XAS at the Pd K-edge and ii) CO oxidation over 1 wt% Pt/Al2O3 catalyst studied by operando DRIFTS. The former shows that palladium is in an oxidised state at all studied temperatures, 250, 300, 350, 400 °C and the latter shows the presence of linearly adsorbed CO on the platinum surface. Furthermore, temperature-resolved reduction of palladium catalyst with methane and CO oxidation over platinum catalyst are also studied. Based on these results, the catalyst structure and surface reaction dynamics are discussed, which demonstrate not only the applicability and versatility of the microreactor for combined operando XAS and DRIFTS studies, but also illustrate the unique advantages of the microreactor for high space velocity and transient response experiments

    Catalysis Research of Relevance to Carbon Management: Progress, Challenges, and Opportunities

    Full text link

    A practical demonstration of electronic promotion in the reduction of ceria coated PGM catalysts.

    No full text
    When ceria is deposited over supported PGM catalysts its reducibility is dependent on the work function of the underlying metal

    Rationalization of interactions in precious metal/ceria catalysts using the d-band center model.

    No full text
    A correlation between ceria reducibility and the precious-metal d-band center is reported for ceria-supported precious-metal catalysts. The results could provide the missing link to fully explain the occurrence of strong metal-support interaction (SMSI) and hydrogen spillover in catalysts that consist of dispersed metals in contact with reducible metal oxides
    • 

    corecore