8,360 research outputs found
A Langevin analysis of fundamental noise limits in Coherent Anti-Stokes Raman Spectroscopy
We use a Langevin approach to analyze the quantum noise in Coherent
Anti-Stokes Raman Spectroscopy (CARS) in several experimental scenarios: with
continuous wave input fields acting simultaneously and with fast sequential
pulsed lasers where one field scatters off the coherence generated by other
fields; and for interactions within a cavity and in free space. In all the
cases, the signal as well as the quantum noise due to spontaneous decay and
decoherence in the medium are shown to be described by the same general
expression. Our theory in particular shows that for short interaction times,
the medium noise is not important and the efficiency is limited only by the
intrinsic quantum nature of the photon. We obtain fully analytic results
\emph{without} making an adiabatic approximation, the fluctuations of the
medium and the fields are self solved consistently.Comment: 12 pages, 1 figur
Broadband squeezed light from phase-locked single-mode sub-Poissonian lasers
We consider sub-Poissonian single-mode laser with external synchronization
and analyze its applicability to the problems of quantum information. Using
Heisenberg-Langevin theory we calculate the quadrature variances of the field
emitted by this laser. It is shown that such systems can demonstrate strong
quadrature squeezing. Taking into account that the emitted field is temporally
multi-mode the application of such sources to multichannel quantum
teleportation and dense coding protocols is discussed.Comment: 14 pages, 7 figure
Quantum parallel dense coding of optical images
We propose quantum dense coding protocol for optical images. This protocol
extends the earlier proposed dense coding scheme for continuous variables
[S.L.Braunstein and H.J.Kimble, Phys.Rev.A 61, 042302 (2000)] to an essentially
multimode in space and time optical quantum communication channel. This new
scheme allows, in particular, for parallel dense coding of non-stationary
optical images. Similar to some other quantum dense coding protocols, our
scheme exploits the possibility of sending a classical message through only one
of the two entangled spatially-multimode beams, using the other one as a
reference system. We evaluate the Shannon mutual information for our protocol
and find that it is superior to the standard quantum limit. Finally, we show
how to optimize the performance of our scheme as a function of the
spatio-temporal parameters of the multimode entangled light and of the input
images.Comment: 15 pages, 4 figures, RevTeX4. Submitted to the Special Issue on
Quantum Imaging in Journal of Modern Optic
Entanglement measurement of the quadrature components without the homodyne detection in the spatially multi-mode far-field
We consider the measuring procedure that in principle allows to avoid the
homodyne detection for the simultaneous selection of both quadrature components
in the far-field. The scheme is based on the use of the coherent sources of the
non-classical light. The possibilities of the procedure are illustrated on the
basis of the use of pixellised sources, where the phase-locked sub-Poissonian
lasers or the degenerate optical parametric oscillator generating above
threshold are chosen as the pixels. The theory of the pixellised source of the
spatio-temporal squeezed light is elaborated as a part of this investigation.Comment: 11 pages, 5 figures, RevTeX4. Submitted to Phys. Rev.
- …