48 research outputs found

    Before sailing on a domain-wall sea

    Full text link
    We discuss the very different roles of the valence-quark and the sea-quark residual masses (mresvm_{res}^v and mressm_{res}^s) in dynamical domain-wall fermions simulations. Focusing on matrix elements of the effective weak hamiltonian containing a power divergence, we find that mresvm_{res}^v can be a source of a much bigger systematic error. To keep all systematic errors due to residual masses at the 1% level, we estimate that one needs amress≤10−3a m_{res}^s \le 10^{-3} and amresv≤10−5a m_{res}^v \le 10^{-5}, at a lattice spacing a∼0.1a\sim 0.1 fm. The practical implications are that (1) optimal use of computer resources calls for a mixed scheme with different domain-wall fermion actions for the valence and sea quarks; (2) better domain-wall fermion actions are needed for both the sea and the valence sectors.Comment: latex, 25 pages. Improved discussion in appendix, including correction of some technical mistakes; ref. adde

    Chiral Gauge Theory on Lattice with Domain Wall Fermions

    Full text link
    We investigate a U(1) lattice chiral gauge theory with domain wall fermions and compact gauge fixing. In the reduced model limit, our perturbative and numerical investigations show that there exist no extra mirror chiral modes. The longitudinal gauge degrees of freedom have no effect on the free domain wall fermion spectrum consisting of opposite chiral modes at the domain wall and at the anti-domain wall which have an exponentially damped overlap.Comment: 16 pages revtex, 5 postscript figures, PRD versio

    Perturbative study for domain-wall fermions in 4+1 dimensions

    Get PDF
    We investigate a U(1) chiral gauge model in 4+1 dimensions formulated on the lattice via the domain-wall method. We calculate an effective action for smooth background gauge fields at a fermion one loop level. From this calculation we discuss properties of the resulting 4 dimensional theory, such as gauge invariance of 2 point functions, gauge anomalies and an anomaly in the fermion number current.Comment: 39 pages incl. 9 figures, REVTeX+epsf, uuencoded Z-compressed .tar fil

    A further study of the possible scaling region of lattice chiral fermions

    Get PDF
    In the possible scaling region for an SU(2) lattice chiral fermion advocated in {\it Nucl. Phys.} B486 (1997) 282, no hard spontaneous symmetry breaking occurs and doublers are gauge-invariantly decoupled via mixing with composite three-fermion-states that are formed by local multifermion interactions. However the strong coupling expansion breaks down due to no ``static limit'' for the low-energy limit (pa∼0pa\sim 0). In both neutral and charged channels, we further analyze relevant truncated Green functions of three-fermion-operators by the strong coupling expansion and analytical continuation of these Green functions in the momentum space. It is shown that in the low-energy limit, these relevant truncated Green functions of three-fermion-states with the ``wrong'' chiralities positively vanish due to the generalized form factors (the wave-function renormalizations) of these composite three-fermion-states vanishing as O((pa)^4) for pa∼0pa\sim 0. This strongly implies that the composite three-fermion-states with ``wrong'' chirality are ``decoupled'' in this limit and the low-energy spectrum is chiral, as a consequence, chiral gauge symmetries can be exactly preserved.Comment: A few typing-errors, in particular in Eq.50, have been correcte
    corecore