48 research outputs found
Before sailing on a domain-wall sea
We discuss the very different roles of the valence-quark and the sea-quark
residual masses ( and ) in dynamical domain-wall fermions
simulations. Focusing on matrix elements of the effective weak hamiltonian
containing a power divergence, we find that can be a source of a
much bigger systematic error. To keep all systematic errors due to residual
masses at the 1% level, we estimate that one needs
and , at a lattice spacing fm. The
practical implications are that (1) optimal use of computer resources calls for
a mixed scheme with different domain-wall fermion actions for the valence and
sea quarks; (2) better domain-wall fermion actions are needed for both the sea
and the valence sectors.Comment: latex, 25 pages. Improved discussion in appendix, including
correction of some technical mistakes; ref. adde
Chiral Gauge Theory on Lattice with Domain Wall Fermions
We investigate a U(1) lattice chiral gauge theory with domain wall fermions
and compact gauge fixing. In the reduced model limit, our perturbative and
numerical investigations show that there exist no extra mirror chiral modes.
The longitudinal gauge degrees of freedom have no effect on the free domain
wall fermion spectrum consisting of opposite chiral modes at the domain wall
and at the anti-domain wall which have an exponentially damped overlap.Comment: 16 pages revtex, 5 postscript figures, PRD versio
Perturbative study for domain-wall fermions in 4+1 dimensions
We investigate a U(1) chiral gauge model in 4+1 dimensions formulated on the
lattice via the domain-wall method. We calculate an effective action for smooth
background gauge fields at a fermion one loop level. From this calculation we
discuss properties of the resulting 4 dimensional theory, such as gauge
invariance of 2 point functions, gauge anomalies and an anomaly in the fermion
number current.Comment: 39 pages incl. 9 figures, REVTeX+epsf, uuencoded Z-compressed .tar
fil
A further study of the possible scaling region of lattice chiral fermions
In the possible scaling region for an SU(2) lattice chiral fermion advocated
in {\it Nucl. Phys.} B486 (1997) 282, no hard spontaneous symmetry breaking
occurs and doublers are gauge-invariantly decoupled via mixing with composite
three-fermion-states that are formed by local multifermion interactions.
However the strong coupling expansion breaks down due to no ``static limit''
for the low-energy limit (). In both neutral and charged channels, we
further analyze relevant truncated Green functions of three-fermion-operators
by the strong coupling expansion and analytical continuation of these Green
functions in the momentum space. It is shown that in the low-energy limit,
these relevant truncated Green functions of three-fermion-states with the
``wrong'' chiralities positively vanish due to the generalized form factors
(the wave-function renormalizations) of these composite three-fermion-states
vanishing as O((pa)^4) for . This strongly implies that the composite
three-fermion-states with ``wrong'' chirality are ``decoupled'' in this limit
and the low-energy spectrum is chiral, as a consequence, chiral gauge
symmetries can be exactly preserved.Comment: A few typing-errors, in particular in Eq.50, have been correcte