12 research outputs found

    Multiplexed control of spin quantum memories in a photonic circuit

    Full text link
    A central goal in many quantum information processing applications is a network of quantum memories that can be entangled with each other while being individually controlled and measured with high fidelity. This goal has motivated the development of programmable photonic integrated circuits (PICs) with integrated spin quantum memories using diamond color center spin-photon interfaces. However, this approach introduces a challenge in the microwave control of individual spins within closely packed registers. Here, we present a quantum-memory-integrated photonics platform capable of (i) the integration of multiple diamond color center spins into a cryogenically compatible, high-speed programmable PIC platform; (ii) selective manipulation of individual spin qubits addressed via tunable magnetic field gradients; and (iii) simultaneous control of multiple qubits using numerically optimized microwave pulse shaping. The combination of localized optical control, enabled by the PIC platform, together with selective spin manipulation opens the path to scalable quantum networks on intra-chip and inter-chip platforms.Comment: 10 pages, 4 figure

    Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    No full text
    The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW) and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics
    corecore