56 research outputs found

    Identification of Genes Contributing to the Virulence of Francisella tularensis SCHU S4 in a Mouse Intradermal Infection Model

    Get PDF
    Background: Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings: The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD\u2085\u2080 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably \u394pyrB and \u394recA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD\u2085\u2080 of >10\ub3 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD\u2085\u2080 of 6510\u2077 CFU. Conclusions/Significance: The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.Peer reviewed: YesNRC publication: Ye

    Interrelationship between Dendritic Cell Trafficking and Francisella tularensis Dissemination following Airway Infection

    Get PDF
    Francisella tularensis, the etiological agent of the inhalation tularemia, multiplies in a variety of cultured mammalian cells. Nevertheless, evidence for its in vivo intracellular residence is less conclusive. Dendritic cells (DC) that are adapted for engulfing bacteria and migration towards lymphatic organs could serve as potential targets for bacterial residence and trafficking. Here, we focus on the in vivo interactions of F. tularensis with DC following airway infection of mice. Lethal airway infection of mice with the live vaccine strain (LVS) results in trafficking of a CD11bhigh/CD11cmed/autofluorescencelow DC subset from the respiratory tract to the draining mediastinal lymph node (MdLN). Simultaneously, a rapid, massive bacterial colonization of the MdLN occurs, characterized by large bacterial foci formation. Analysis of bacteria in the MdLN revealed a major population of extracellular bacteria, which co-exists with a substantial fraction of intracellular bacteria. The intracellular bacteria are viable and reside in cells sorted for DC marker expression. Moreover, in vivo vital staining experiments indicate that most of these intracellular bacteria (∼75%) reside in cells that have migrated from the airways to the MdLN after infection. The correlation between DC and bacteria accumulation in the MdLN was further demonstrated by manipulating DC migration to the MdLN through two independent pathways. Impairment of DC migration to the MdLN, either by a sphingosine-1-phosphate receptor agonist (FTY720) or by the D prostanoid receptor 1 agonist (BW245C), resulted in reduced bacterial colonization of MdLN. Moreover, BW245C treatment delayed the onset of morbidity and the time to death of the infected mice. Taken together, these results suggest that DC can serve as an inhabitation niche for F. tularensis in the early stages of infection, and that DC trafficking plays a role in pathogen dissemination. This underscores the therapeutic potential of DC migration impairing drugs in tularemia treatment

    Microarray Analysis of Human Monocytes Infected with Francisella tularensis Identifies New Targets of Host Response Subversion

    Get PDF
    Francisella tularensis is a gram-negative facultative bacterium that causes the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. In order to help understand the mechanisms by which this occurs, we performed Affymetrix microarray analysis on transcripts from blood monocytes infected with the virulent Type A Schu S4 strain. Results showed that expression of several host response genes were reduced such as those associated with interferon signaling, Toll-like receptor signaling, autophagy and phagocytosis. When compared to microarrays from monocytes infected with the less virulent F. tularensis subsp. novicida, we found qualitative differences and also a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes in the Schu S4 strain. Notably, the PI3K / Akt1 pathway appeared specifically down-regulated following Schu S4 infection and a concomitantly lower cytokine response was observed. This study identifies several new factors potentially important in host cell subversion by the virulent Type A F. tularensis that may serve as novel targets for drug discovery

    Temporal differences of onset between primary skin lesions and regional lymph node lesions for tularemia in Japan: a clinicopathologic and immunohistochemical study of 19 skin cases and 54 lymph node cases

    Get PDF
    For tularemia, a zoonosis caused by the gram-negative coccobacillus Francisella tularensis, research of the relation between skin lesions and lymph node lesions has not been reported in the literature. This report describes skin lesions and lymph node lesions and their mutual relation over time for tularemia in Japan. Around the second day after infection (DAI), a subcutaneous abscess was observed (abscess form). Hand and finger skin ulcers formed during the second to the fourth week. Subcutaneous and dermal granulomas were observed with adjacent monocytoid B lymphocytes (MBLs) (abscess–granulomatous form). From the sixth week, large granulomas with central homogeneous lesions emerged diffusely (granulomatous form). On 2–14 DAI, F. tularensis antigen in skin lesions was detected in abscesses. During 7–12 DAI, abscesses with adjacent MBLs appeared without epithelioid granuloma (abscess form) in regional lymph nodes. During the second to fifth week, granulomas appeared with necrosis (abscess–granulomatous form). After the sixth week, large granulomas with a central homogeneous lesion (granulomatous form) appeared. F. tularensis antigen in lymph node lesions was observed in the abscess on 7–92 DAI. Apparently, F. tularensis penetrates the finger skin immediately after contact with infected hares. Subsequently, the primary lesion gradually transfers from skin to regional lymph nodes. The regional lymph node lesions induced by skin lesion are designated as dermatopathic lymphadenopathy. This study revealed temporal differences of onset among the skin and lymph node lesions

    Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After infecting a mammalian host, the facultative intracellular bacterium, <it>Francisella tularensis</it>, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection.</p> <p>Results</p> <p>Microarray analysis of <it>F. tularensis </it>LVS shifted from 26°C (environmental) to 37°C (mammalian) showed ~11% of this bacterium's genes were differentially-regulated. Importantly, 40% of the protein-coding genes that were induced at 37°C have been previously implicated in virulence or intracellular growth of <it>Francisella </it>in other studies, associating the bacterial response to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37°C encode proteins of unknown function, suggesting novel <it>Francisella </it>virulence traits are regulated by mammalian temperature. To explore this possibility, we generated two mutants of loci induced at 37°C [FTL_1581 and FTL_1664 (<it>deoB</it>)]. The FTL_1581 mutant was attenuated in a chicken embryo infection model, which was likely attributable to a defect in survival within macrophages. FTL_1581 encodes a novel hypothetical protein that we suggest naming <it>t</it>emperature-<it>i</it>nduced, <it>v</it>irulence-associated locus <it>A</it>, <it>tivA</it>. Interestingly, the <it>deoB </it>mutant showed diminished entry into mammalian cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study identifying a <it>Francisella </it>gene that contributes to uptake into both phagocytic and non-phagocytic host cells.</p> <p>Conclusion</p> <p>Our results provide new insight into mechanisms of <it>Francisella </it>virulence regulation and pathogenesis. <it>F. tularensis </it>LVS undergoes considerable gene expression changes in response to mammalian body temperature. This temperature shift is important for the regulation of genes that are critical for the pathogenesis of <it>Francisella</it>. Importantly, the compilation of temperature-regulated genes also defines a rich collection of novel candidate virulence determinants, including <it>tivA </it>(FTL_1581). An analysis of <it>tivA </it>and <it>deoB </it>(FTL_1664) revealed that these genes contribute to intracellular survival and entry into mammalian cells, respectively.</p

    Nucleolin, a Shuttle Protein Promoting Infection of Human Monocytes by Francisella tularensis

    Get PDF
    International audienceWe herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages

    Glutathione Provides a Source of Cysteine Essential for Intracellular Multiplication of Francisella tularensis

    Get PDF
    Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative γ-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, γ-glutamyl-cysteinyl-glycine) and γ-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria–host adaptation

    Small Molecule Control of Virulence Gene Expression in Francisella tularensis

    Get PDF
    In Francisella tularensis, the SspA protein family members MglA and SspA form a complex that associates with RNA polymerase (RNAP) to positively control the expression of virulence genes critical for the intramacrophage growth and survival of the organism. Although the association of the MglA-SspA complex with RNAP is evidently central to its role in controlling gene expression, the molecular details of how MglA and SspA exert their effects are not known. Here we show that in the live vaccine strain of F. tularensis (LVS), the MglA-SspA complex works in concert with a putative DNA-binding protein we have called PigR, together with the alarmone guanosine tetraphosphate (ppGpp), to regulate the expression of target genes. In particular, we present evidence that MglA, SspA, PigR and ppGpp regulate expression of the same set of genes, and show that mglA, sspA, pigR and ppGpp null mutants exhibit similar intramacrophage growth defects and are strongly attenuated for virulence in mice. We show further that PigR interacts directly with the MglA-SspA complex, suggesting that the central role of the MglA and SspA proteins in the control of virulence gene expression is to serve as a target for a transcription activator. Finally, we present evidence that ppGpp exerts its effects by promoting the interaction between PigR and the RNAP-associated MglA-SspA complex. Through its responsiveness to ppGpp, the contact between PigR and the MglA-SspA complex allows the integration of nutritional cues into the regulatory network governing virulence gene expression

    Isolation and Mutagenesis of a Capsule-Like Complex (CLC) from Francisella tularensis, and Contribution of the CLC to F. tularensis Virulence in Mice

    Get PDF
    BACKGROUND: Francisella tularensis is a category-A select agent and is responsible for tularemia in humans and animals. The surface components of F. tularensis that contribute to virulence are not well characterized. An electron-dense capsule has been postulated to be present around F. tularensis based primarily on electron microscopy, but this specific antigen has not been isolated or characterized. METHODS AND FINDINGS: A capsule-like complex (CLC) was effectively extracted from the cell surface of an F. tularensis live vaccine strain (LVS) lacking O-antigen with 0.5% phenol after 10 passages in defined medium broth and growth on defined medium agar for 5 days at 32°C in 7% CO₂. The large molecular size CLC was extracted by enzyme digestion, ethanol precipitation, and ultracentrifugation, and consisted of glucose, galactose, mannose, and Proteinase K-resistant protein. Quantitative reverse transcriptase PCR showed that expression of genes in a putative polysaccharide locus in the LVS genome (FTL_1432 through FTL_1421) was upregulated when CLC expression was enhanced. Open reading frames FTL_1423 and FLT_1422, which have homology to genes encoding for glycosyl transferases, were deleted by allelic exchange, and the resulting mutant after passage in broth (LVSΔ1423/1422_P10) lacked most or all of the CLC, as determined by electron microscopy, and CLC isolation and analysis. Complementation of LVSΔ1423/1422 and subsequent passage in broth restored CLC expression. LVSΔ1423/1422_P10 was attenuated in BALB/c mice inoculated intranasally (IN) and intraperitoneally with greater than 80 times and 270 times the LVS LD₅₀, respectively. Following immunization, mice challenged IN with over 700 times the LD₅₀ of LVS remained healthy and asymptomatic. CONCLUSIONS: Our results indicated that the CLC may be a glycoprotein, FTL_1422 and -FTL_1423 were involved in CLC biosynthesis, the CLC contributed to the virulence of F. tularensis LVS, and a CLC-deficient mutant of LVS can protect mice against challenge with the parent strain

    Host-Adaptation of Francisella tularensis Alters the Bacterium's Surface-Carbohydrates to Hinder Effectors of Innate and Adaptive Immunity

    Get PDF
    The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase.SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice.F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development
    • …
    corecore