117 research outputs found

    Temperature Diffusivity Measurement and Nondestructive Testing Requiring No Extensive Sample Preparation and Using Stepwise Point Heating and IR Thermography

    Get PDF
    This chapter describes a modification to the laser flash method that allows determining temperature diffusivity and nondestructive testing of materials and constructions without cutting samples of predefined geometry. Stepwise local heating of the studied object surface at a small spot around 0.1 mm radius with simultaneous high temporary-spatial resolution infrared (IR) filming of the transient temperature distribution evolution with a thermal camera provides a wide range of possibilities for material characterization and sample testing. In case of isotropic and macroscopic homogeneous materials, the resulting transient temperature distribution is radially symmetric that renders possible to improve temperature measurement accuracy by averaging many pixels of the IR images located at the same distance from the heating spot center. The temperature diffusivity measurement can be conducted either on thin plates or on massive samples. The developed emissivity independent in plain IR thermographic method and mathematical algorithms enable thermal diffusivity measurement for both cases with accuracy around a few per cent for a wide range of materials starting from refractory ceramics to well-conducting metals. To detect defects, the differential algorithm was used. Subtracting averaged radial symmetric temperature distribution from the original one for each frame makes local inhomogeneities in the sample under study clearly discernible. When applied to crack detection in plates, the technique demonstrates good sensitivity to part-through cracks located both at the visible and invisible sides of the studied object

    Magnetic materials for smart therapy and diagnostics

    Get PDF
    large potential for a variety of applications. Gold-coated magnetic nanoparticles are a class of nanoparticles that have attracted much attention because of their advantageous characteristics, such as their inertness, non-toxicity, super magneticity, ease of detection in the human body, a magnetic core that is protected against oxidation, their facilitated bio-conjugating ability, catalytic surface, and their potential for a variety of biological applications. Gold-coated nanoparticles have great biocompatibility with the human body with the ability to interact with biomolecules such as polypeptides, DNA, and polysaccharides. Herein we report a synthetic procedure for the preparation of water-soluble Fe3O4, Fe3O4@Au core-shell and dumbbell nanoparticles, simple protocol for their synthesis, purification by exclusion chromatography and method for functionalization of gold surface with a number of sulfur-containing ligands (L-cystein, 3-mercaptopropionic acid, 11-mercaptoundecanoic acid, lipoic acid, HS-PEG-COOH, 2-aminoethanethiol, and others). Finally, magnetic nanoparticles were functionalized by immobilization of enzymes, PSMA targeted ligands, fluorescent dyes. These magnetic nanoparticles were characterized by transmission electron microscopy (TEM), FTIR, DLS and UV-Vis spectroscopy. We describe a distinct effect of non-heating superlow-frequency magnetic fields on the kinetics of chemical reactions catalyzed by the enzymes immobilized on core-shell nanoparticles.The observation is unprecedented and suggests the significance of magneto-mechanochemical effects induced by realignment of MNP magnetic moments in an AC magnetic field rather than traditional heating. Such low frequency and amplitude fields are safe and are not expected to cause any damage to biological tissues. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132)

    Modeling and Simulation in Microwave-Photonics Applications

    Get PDF
    In this chapter, with the goal to recover an optimal mean for computer-aided modeling and simulating a newer class of microwave-photonics-based radio electronic apparatuses, a number of comparative simulation experiments for the basic microwave band electronic devices and systems using well-known software tools referred to photonic design automation or upgraded electronic design automation platforms are carried out. As a result, it is shown that exploiting the software of upgraded electronic design automation platform provides significantly better accuracy of calculations for the devices and systems of this class

    Design and Optimization of Photonics-Based Beamforming Networks for Ultra-Wide mmWave-Band Antenna Arrays

    Get PDF
    In this chapter, we review the worldwide progress referred to designing optical beamforming networks intended to the next-generation ultra-wideband millimeter-wave phased array antennas for incoming fifth-generation wireless systems, which in recent years is under the close attention of worldwide communication community. Following the tendency, we study in detail the design concepts below true-time-delay photonics beamforming networks based on switchable or continuously tunable control. Guided by them, we highlight our NI AWRDE CAD-based simulation experiments in the frequency range of 57–76 GHz on design of two 16-channel photonics beamforming networks using true-time-delay approach. In the first scheme of the known configuration, each channel includes laser, optical modulator, and 5-bit binary switchable chain of optical delay lines. The second scheme has an optimized configuration based on only 3-bit binary switchable chain of optical delay lines in each channel, all of which are driven by four lasers with wavelength division multiplexing and a common optical modulator. In the result, the novel structural and cost-efficient configuration of microwave-photonics beamforming network combining wavelength division multiplexing and true-time-delay techniques is proposed and investigated

    Computer-Aided Design of Microwave-Photonics-Based RF Circuits and Systems

    Get PDF
    In the process of design, a developer of new microwave-photonics-based RF apparatuses is facing a problem of choosing appropriate software. As of today, the existing optical and optoelectronic CAD tools (OE-CAD) are not developed like CAD tools intended for modeling of RF circuits (E-CAD). On the contrary, operating at symbolic level, modern high-power microwave E-CAD tools simply and with high precision solve this problem, but there are no models of active photonic components in their libraries. To overcome this problem, we proposed and validated experimentally a new approach to model a broad class of promising analog microwave radio-electronics systems based on microwave photonics technology. This chapter reviews our known, updated, new models and simulation results using microwave-electronics off-the-shelf computer tool NI AWRDE to pursue advanced performances corresponding to the last generation of key photonics structural elements and important RF devices on their basis

    The use of the digital twin in the design of a prefabricated product

    Get PDF
    This paper discusses the process of creating a digital twin of a product, which is a virtual model of a mechanical connection. The modeling was carried out using the Pro/ENGINEER software, which allows building a three-dimensional model of the product assembly process, which is a set of three-dimensional electronic models of the product, equipment and tools. The models include a mathematical description of the geometric, physical-mechanical and technical parameters of the objects under consideration. It is shown that it is the formation of a triad of electronic models: product-man-equipment in the considered area of computer-aided design of technological processes for the implementation of mechanical connections that allows modeling with the necessary accuracy and adequacy

    New hybrid materials on the basis of magnetite and magnetite-gold nanoparticles for biomedical application

    Get PDF
    During last decades magnetite nanoparticles (NPs) attract a deep interest of scientists due to their potential application in therapy and diagnostics. However, magnetite nanoparticles are toxic and non-stable in physiological conditions. To solve these problems, we decided to create two types of hybrid systems based on magnetite and gold which is inert and biocompatible: gold as a shell material (first type) and gold as separate NPs interfacially bond to magnetite NPs (second type). An additional advantage of gold is the possibility of its functionalization with a variety of sulphur-containing ligands; that is very important for drug delivery and creating of tissue-specific MRI contrast agents. The synthesis of the first type hybrid nanoparticles was carried out as follows: magnetite nanoparticles with an average diameter of 9±2 nm were obtained by co-precipitation of iron (II, III) chlorides then they were covered with gold shell by iterative reduction of hydrogen tetrachloroaurate with hydroxylamine hydrochloride. According to the TEM, ICP MS and EDX data, final nanoparticles had an average diameter of 31±4 nm and contained iron even after hydrochloric acid treatment. However, iron signals (K-line, 7,1 keV) were not localized so we can’t speak about one single magnetic core. Described nanoparticles covered with mercapto-PEG acid were non-toxic for human prostate cancer PC-3/ LNCaP cell lines (more than 90% survived cells as compared to control) and had high R2-relaxivity rates (\u3e190 mМ-1s-1) that exceed the transverse relaxation rate of commercial MRI-contrasting agents. These nanoparticles were also used for chymotrypsin enzyme immobilization. The effect of alternating magnetic field on catalytic properties of chymotrypsin immobilized on magnetite nanoparticles, notably the slowdown of catalyzed reaction at the level of 35-40 % was found. The most probable reason for the observed effect is the change of active centers topology on the enzyme surface as a result of its deformation under applied forces. The synthesis of the second type hybrid nanoparticles also involved two steps. Firstly, spherical gold nanoparticles with an average diameter of 9±2 nm were synthesized by the reduction of hydrogen tetrachloroaurate with oleylamine; secondly, they were used as seeds during magnetite synthesis by thermal decomposition of iron pentacarbonyl in octadecene. As a result, so-called dumbbell-like structures were obtained where magnetite (cubes with 25±6 nm diagonal) and gold nanoparticles were connected together pairwise. By HRTEM method (first time for this type of structure) an epitaxial growth of magnetite nanoparticles on gold surface with co-orientation of (111) planes was discovered. These nanoparticles were transferred into water by means of block-copolymer Pluronic F127 then loaded with anti-cancer drug doxorubicin and also PSMA-vector specific for LNCaP cell line. Obtained nanoparticles were found to have moderate toxicity for human prostate cancer cells and got into the intracellular space after 45 minutes of incubation (according to fluorescence microscopy data). These materials are also perspective from MRI point of view (R2-relaxivity rates \u3e70 mМ-1s-1). Thereby, in this work magnetite-gold hybrid nanoparticles, which have a strong potential for biomedical application, particularly in targeted drug delivery and magnetic resonance imaging, were synthesized and characterized. That paves the way to the development of new medicine types – theranostics. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132). This work was also supported by Grant of Ministry of Education and Science of the Russian Federation К1-2014-022, Grant of Russian Scientific Foundation 14-13-00731 and MSU development program 5.13

    Nanomechanical testing of ODS steels irradiated with 1 MeV/amu heavy ions

    Get PDF
    Heavy ion beams with high damage production rate are widely used to evaluate radiation tolerance of promising nuclear reactor materials, such as oxide dispersion strengthened (ODS) alloys, including their mechanical properties. Since typical ion projected ranges do not exceed 1 micron, nanoindentation technique is the most convenient method for examination of irradiated materials. In present work we report data on radiation hardening of several ODS steels irradiated with 107 MeV Kr and 167 MeV Xe ions. Some samples were irradiated trough the special Al-foil filter in order to obtain the unfolding damage profile on the surface. The post-irradiation testing steels included conventional nanoindentation measurements and CSM for determination of possible size effects associated with indentation size effect as well as soft surface effect. Swift heavy ion induced changes in microstructure evolution were studied by transmission electron microscopy (TEM). It was found that hardening of the ODS steels irradiated with krypton and xenon ions of fission fragment energy for damage dose about 1 dpa level is in the range 5-25% (figure 1). TEM examination have revealed complete amorphization of carbide and (Y,Ti) oxide particles in ferritic matrices as a result of multiple amorphous latent track overlapping. At the same time no dissolution of nano-oxide particles was observed. This implies that radiation hardening is not due to changes in morphology of nanoparticles

    Carbon compounds in the West Kimberley lamproites (Australia) : Insights from melt and fluid inclusions

    Get PDF
    Petrological and geochemical studies of lamproites can provide useful insights into the nature of their lithospheric mantle sources, but their geochemical and mineralogical diversity has complicated our understanding of their primary/parental melt composition, volatile (CO2, H2O) inventory and magmatic evolution. To help address this issue, we present a detailed study of different generations (primary, pseudo-secondary, secondary) of crystal, and melt and fluid inclusions in olivine, Cr-spinel and perovskite from three olivine lamproites in the Ellendale Field of the West Kimberley Province (Australia) in order to understand the composition and evolution of their parental magmas. Melt inclusions in the different host minerals and from each of these localities are broadly similar to each other and consist of glass, alkali/alkali-earth (Mg-Ca-K-Na-Ba) carbonates, phosphates and chlorides, in addition to minerals typical of lamproite groundmass (fluorapatite, perovskite, phlogopite, diopside, wadeite, Mg-ilmenite, Fe-Mg-Ti-Cr spinel). The dominant volatile species in the melt and fluid inclusions is CO2 based on Raman data. Heating experiments of melt/fluid inclusions in olivine show significant phase transformations in which the carbonate may separate into an immiscible carbonate-rich sulphatebearing fraction or exsolve a CO2 fluid. Our results indicate that carbonates, along with alkali/alkali-earths, halogens and sulphur, became progressively concentrated in the West Kimberley lamproitic magmas during crystallisation, leading to the entrapment of a complex array of daughter minerals, some not previously reported from lamproites and, in some inclusions, immiscible carbonate melt. The widespread occurrence of daughter carbonates in melt/fluid inclusions in lamproite minerals is at odds with their apparent paucity in the lamproite groundmass. The presence of carbonate and the abundance of CO2-rich and H2O-poor melt and fluid inclusions are attributed to the preferential partitioning of CO2 into the vapour and retention of H2O in the magma during degassing, coupled with H2O loss by post-entrapment modification of the inclusions through H+ diffusion. (C) 2022 Published by Elsevier B.V. on behalf of International Association for Gondwana Research.Peer reviewe
    • …
    corecore