253 research outputs found

    Earth‐Moon‐Mars Radiation Environment Module framework

    Get PDF
    [1] We are preparing to return humans to the Moon and setting the stage for exploration to Mars and beyond. However, it is unclear if long missions outside of low-Earth orbit can be accomplished with acceptable risk. The central objective of a new modeling project, the Earth-Moon-Mars Radiation Exposure Module (EMMREM), is to develop and validate a numerical module for characterizing time-dependent radiation exposure in the Earth-Moon-Mars and interplanetary space environments. EMMREM is being designed for broad use by researchers to predict radiation exposure by integrating over almost any incident particle distribution from interplanetary space. We detail here the overall structure of the EMMREM module and study the dose histories of the 2003 Halloween storm event and a June 2004 event. We show both the event histories measured at 1 AU and the evolution of these events at observer locations beyond 1 AU. The results are compared to observations at Ulysses. The model allows us to predict how the radiation environment evolves with radial distance from the Sun. The model comparison also suggests areas in which our understanding of the physics of particle propagation and energization needs to be improved to better forecast the radiation environment. Thus, we introduce the suite of EMMREM tools, which will be used to improve risk assessment models so that future human exploration missions can be adequately planned for

    The first cosmic ray albedo proton map of the Moon

    Get PDF
    [1] Neutrons emitted from the Moon are produced by the impact of galactic cosmic rays (GCRs) within the regolith. GCRs are high-energy particles capable of smashing atomic nuclei in the lunar regolith and producing a shower of energetic protons, neutrons and other subatomic particles. Secondary particles that are ejected out of the regolith become “albedo” particles. The neutron albedo has been used to study the hydrogen content of the lunar regolith, which motivates our study of albedo protons. In principle, the albedo protons should vary as a function of the input GCR source and possibly as a result of surface composition and properties. During the LRO mission, the total detection rate of albedo protons between 60 MeV and 150 MeV has been declining since 2009 in parallel with the decline in the galactic cosmic ray flux, which validates the concept of an albedo proton source. On the other hand, the average yield of albedo protons has been increasing as the galactic cosmic ray spectrum has been hardening, consistent with a disproportionately stronger modulation of lower energy GCRs as solar activity increases. We construct the first map of the normalized albedo proton emission rate from the lunar surface to look for any albedo variation that correlates with surface features. The map is consistent with a spatially uniform albedo proton yield to within statistical uncertainties

    Measurements of galactic cosmic ray shielding with the CRaTER instrument

    Get PDF
    [1] The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument aboard the Lunar Reconnaissance Orbiter has been measuring energetic charged particles from the galactic cosmic rays (GCRs) and solar particle events in lunar orbit since 2009. CRaTER includes three pairs of silicon detectors, separated by pieces of tissue-equivalent plastic that shield two of the three pairs from particles incident at the zenith-facing end of the telescope. Heavy-ion beams studied in previous ground-based work have been shown to be reasonable proxies for the GCRs when their energies are sufficiently high. That work, which included GCR simulations, led to predictions for the amount of dose reduction that would be observed by CRaTER. Those predictions are compared to flight data obtained by CRaTER in 2010–2011

    Limonite – a weathered residual soil heterogeneous at all scales

    Get PDF
    Limonite is a residual soil produced by the decomposition of magnesium silicate (olivine) rocks in tropical environments. During weathering most of the original rock is leached away leaving only its iron content, which is precipitated out in the form of iron sesqui-oxides to create a soft and highly porous soil. The predominant mineral present in limonite is goethite, which forms acicular nanoparticles that agglomerate to produce a silty sand with porous particles. The void ratio varies from 2 to 6, with higher values being a consequence of structure-supported voids. An extensive set of laboratory tests have been performed on a limonite soil profile which extends 50 m to rock. These data show that there is no pattern to shear strength with depth, with the shear strength equally likely to be 50 or 200 kPa through much of the profile. It is argued that the shear strength parameters for failure mechanisms, having any significant length, should be based on average values. The letter presents scanning electron microscopy photographs showing the fundamental particles, the results of triaxial tests comparing natural and reconstituted behaviour which show the effects of microstructure on the meso-scale response, and field data to show site variability

    Substrate Effect on the High Temperature Oxidation Behavior of a Pt-modified Aluminide Coating. Part II: Long-term Cyclic-oxidation Tests at 1,050 C

    Get PDF
    This second part of a two-part study is devoted to the effect of the substrate on the long-term, cyclic-oxidation behavior at 1,050 C of RT22 industrial coating deposited on three Ni-base superalloys (CMSX-4, SCB, and IN792). Cyclicoxidation tests at 1,050 C were performed for up to 58 cycles of 300 h (i.e., 17,400 h of heating at 1,050 C). For such test conditions, interdiffusion between the coating and its substrate plays a larger role in the damage process of the system than during isothermal tests at 900, 1,050, and 1,150 C for 100 h and cyclicoxidation tests at 900 C which were reported in part I [N. Vialas and D. Monceau, Oxidation of Metals 66, 155 (2006)]. The results reported in the present paper show that interdiffusion has an important effect on long-term, cyclic-oxidation resistance, so that clear differences can be observed between different superalloys protected with the same aluminide coating. Net-mass-change (NMC) curves show the better cyclic-oxidation behavior of the RT22/IN792 system whereas uncoated CMSX-4 has the best cyclic-oxidation resistance among the three superalloys studied. The importance of the interactions between the superalloy substrate and its coating is then demonstrated. The effect of the substrate on cyclic-oxidation behavior is related to the extent of oxide scale spalling and to the evolution of microstructural features of the coatings tested. SEM examinations of coating surfaces and cross sections show that spalling on RT22/CMSX-4 and RT22/SCB was favored by the presence of deep voids localized at the coating/oxide interface. Some of these voids can act as nucleation sites for scale spallation. The formation of such interfacial voids was always observed when the b to c0 transformation leads to the formation of a two-phase b/c0 layer in contact with the alumina scale. On the contrary, no voids were observed in RT22/IN792, since this b to c0 transformation occurs gradually by an inward transformation of b leading to the formation of a continuous layer of c0 phase, parallel to the metal/scale interface

    Differences in Inflammatory Markers between Nulliparous Women Admitted to Hospitals in Preactive vs Active Labor

    Get PDF
    Objective To determine whether labor-associated inflammatory markers differ between low-risk, nulliparous women in preactive vs active labor at hospital admission and over time. Study Design Prospective comparative study of low-risk, nulliparous women with spontaneous labor onset at term (n = 118) sampled from 2 large Midwestern hospitals. Circulating concentrations of inflammatory markers were measured at admission and again 2 and 4 hours later: namely, neutrophil, and monocyte counts; and serum inflammatory cytokines (interleukin -1ÎČ, interleukin-6, tumor necrosis factor-α, interleukin-10) and chemokines (interleukin-8). Biomarker concentrations and their patterns of change over time were compared between preactive (n = 63) and active (n = 55) labor admission groups using Mann-Whitney U tests. Results Concentrations of interleukin-6 and interleukin-10 in the active labor admission group were significantly higher than concentrations in the preactive labor admission group at all 3 time points. Neutrophil levels were significantly higher in the active group at 2 and 4 hours after admission. The rate of increase in neutrophils and interleukin-10 between admission and 2 hours later was faster in the active group (P \u3c .001 and P = .003, respectively). Conclusion Circulating concentrations of several inflammatory biomarkers are higher and their rate of change over time since admission is faster among low-risk, nulliparous women admitted to hospitals in active labor, as compared with those admitted in preactive labor. More research is needed to determine if progressive changes in inflammatory biomarkers might be a useful adjunct to improving the assessment of labor progression and determining the optimal timing of labor admission

    Genome-wide meta-analysis identified novel variant associated with hallux valgus in Caucasians

    Get PDF
    Background: Hallux valgus, one of the most common structural foot deformities, is highly heritable. However, previous efforts to elucidate the genetic underpinnings of hallux valgus through a genome-wide association study (GWAS) conducted in 4409 Caucasians did not identify genome-wide significant associations with hallux valgus in both gender-specific and sex-combined GWAS meta-analyses. In this analysis, we add newly available data and more densely imputed genotypes to identify novel genetic variants associated with hallux valgus. Methods: A total of 5925 individuals of European Ancestry were categorized into two groups: 'hallux valgus present' (n = 2314) or 'no deformity' (n = 3611) as determined by trained examiners or using the Manchester grading scale. Genotyping was performed using commercially available arrays followed by imputation to the Haplotype Reference Consortium (HRC) reference panel version 1.1. We conducted both sex-specific and sex-combined association analyses using logistic regression and generalized estimating equations as appropriate in each cohort. Results were then combined in a fixed-effects inverse-variance meta-analyses. Functional Mapping and Annotation web-based platform (FUMA) was used for positional mapping, gene and gene-set analyses. Results: We identified a novel locus in the intronic region of CLCA2 on chromosome 1, rs55807512 (OR = 0.48, p = 2.96E-09), an expression quantitative trait locus for COL24A1, a member of the collagen gene family. Conclusion: In this report of the largest GWAS of hallux valgus to date, we identified a novel genome-wide significant locus for hallux valgus. Additional replication and functional follow-up will be needed to determine the functional role of this locus in hallux valgus biology

    Associations of Occupational Tasks with Knee and Hip Osteoarthritis: The Johnston County Osteoarthritis Project

    Get PDF
    This cross-sectional study examined associations of occupational tasks with radiographic and symptomatic osteoarthritis (OA) in a community-based sample
    • 

    corecore