5 research outputs found

    Synergistic anti-angiogenic treatment effects by dual FGFR1 and VEGFR1 inhibition in FGFR1-amplified breast cancer

    No full text
    FGFR1 amplification has been found in 15% of patients with breast cancer and has been postulated as a promising marker to predict response against FGFR inhibitors. However, early phase clinical trials of selective FGFR inhibitors demonstrated only limited efficacy in FGFR1-amplified breast cancer patients. We found that BGJ398, an FGFR inhibitor, effectively inhibited phosphorylation of FGFR1 and MEK/ERK signaling in FGFR1-amplified breast cancer without affecting tumor cell proliferation. However, FGFR1 knockout inhibited tumor angiogenesis in vivo. We unraveled that FGFR1 regulates the secretion of the proangiogenic vascular endothelial growth factor (VEGF) in a MAPK-dependent manner. We further found that FGF-FGFR1 signaling induces an autocrine activation of VEGF-VEGFR1 pathway that again amplifies VEGF secretion via VEGF-VEGFR1-AKT signaling. Targeting both VEGFR1 and FGFR1 resulted in synergistic anti-angiogenic treatment effects in vivo. We thus postulate synergistic treatment effects in FGFR1/VEGFR1-positive breast cancer patients by dual targeting of FGFR and VEGFR

    Combined VEGF and PD-L1 Blockade Displays Synergistic Treatment Effects in an Autochthonous Mouse Model of Small Cell Lung Cancer

    No full text
    Small cell lung cancer (SCLC) represents the most aggressive pulmonary neoplasm and is often diagnosed at late stage with limited survival, despite combined chemotherapies. We show in an autochthonous mouse model of SCLC that combined anti-VEGF/anti-PD-L1-targeted therapy synergistically improves treatment outcome compared with anti-PD-L1 and anti-VEGF monotherapy. Mice treated with anti-PD-L1 alone relapsed after 3 weeks and were associated with a tumor-associated PD-1/TIM-3 double-positive exhausted T-cell phenotype. This exhausted T-cell phenotype upon PD-L1 blockade was abrogated by the addition of anti-VEGF-targeted treatment. We confirmed a similar TIM-3-positive T-cell phenotype in peripheral blood mononuclear cells of patients with SCLC with adaptive resistance to anti-PD-1 treatment. Mechanistically, we show that VEGFA enhances coexpression of the inhibitory receptor TIM-3 on T cells, indicating an immunosuppressive function of VEGF in patients with SCLC during anti-PD-1-targeted treatment. Our data strongly suggest that a combination of anti-VEGF and anti-PD-L1 therapies can be an effective treatment strategy in patients with SCLC. Significance: Combining VEGF and PD-L1 blockade could be of therapeutic benefit to patients with small cell lung cancer. (C) 2018 AACR

    Inhibition of Tumor VEGFR2 Induces Serine 897 EphA2-Dependent Tumor Cell Invasion and Metastasis in NSCLC

    No full text
    Anti-angiogenic treatment targeting vascular endothelial growth factor (VEGF)-VEGFR2 signaling has shown limited efficacy in lung cancer patients. Here, we demonstrate that inhibition of VEGFR2 in tumor cells, expressed in similar to 20% of non-squamous non-small cell lung cancer (NSCLC) patients, leads to a pro-invasive phenotype. Drug-induced inhibition of tumor VEGFR2 interferes with the formation of the EphA2/VEGFR2 heterocomplex, thereby allowing RSK to interact with Serine 897 of EphA2. Inhibition of RSK decreases phosphorylation of Serine 897 EphA2. Selective genetic modeling of Serine 897 of EphA2 or inhibition of EphA2 abrogates the formation of metastases in vivo upon VEGFR2 inhibition. In summary, these findings demonstrate that VEGFR2-targeted therapy conditions VEGFR2-positive NSCLC to Serine 897 EphA2-dependent aggressive tumor growth and metastasis. These data shed light on the molecular mechanisms explaining the limited efficacy of VEGFR2-targeted anti-angiogenic treatment in lung cancer patients

    Inhibition of CPAP-tubulin interaction prevents proliferation of centrosome-amplified cancer cells

    No full text
    Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudobipolar division. Here, we set out to prevent clustering of extra centrosomes. Tubulin, by interacting with the centrosomal protein CPAP, negatively regulates CPAP-dependent peri-centriolar material recruitment, and concurrently microtubule nucleation. Screening for compounds that perturb CPAP-tubulin interaction led to the identification of CCB02, which selectively binds at the CPAP binding site of tubulin. Genetic and chemical perturbation of CPAP-tubulin interaction activates extra centrosomes to nucleate enhanced numbers of microtubules prior to mitosis. This causes cells to undergo centrosome de-clustering, prolonged multipolar mitosis, and cell death. 3D-organotypic invasion assays reveal that CCB02 has broad anti-invasive activity in various cancer models, including tyrosine kinase inhibitor (TKI)-resistant EGFR-mutant non-small-cell lung cancers. Thus, we have identified a vulnerability of cancer cells to activation of extra centrosomes, which may serve as a global approach to target various tumors, including drug-resistant cancers exhibiting high incidence of centrosome amplification
    corecore