42 research outputs found

    Safety assessment of the commensal strain Bacteroides xylanisolvens DSM 23964

    Get PDF
    AbstractWe recently isolated and characterized the new strain Bacteroides xylanisolvens DSM 23964 and presented it as potential candidate for the first natural probiotic strain of the genus Bacteroides. In order to evaluate the safety of this strain for use in food, the following standard toxicity assays were conducted with this strain in both viable and pasteurized form: in vitro bacterial reverse mutation assay, in vitro chromosomal aberration assay, and 90day subchronic repeated oral toxicity studies in mice. No mutagenic, clastogenic, or toxic effects were detected even at extremely high doses. In addition, no clinical, hematological, ophthalmological, or histopathological abnormality could be observed after necropsy at any of the doses tested. Hence, the NOAEL could be estimated to be greater than 2.3×1011 CFUs, and 2.3×1014 for pasteurized bacteria calculated as equivalent for an average 70kg human being. In addition, the absence of any in vivo pathogenic properties of viable B. xylanisolvens DSM 23964 cells was confirmed by means of an intraperitoneal abscess formation model in mice which also demonstrated that the bacteria are easily eradicated by the host’s immune system. The obtained results support the assumed safety of B. xylanisolvens DSM 23964 for use in food

    Glyco-Engineered Anti-Human Programmed Death-Ligand 1 Antibody Mediates Stronger CD8 T Cell Activation Than Its Normal Glycosylated and Non-Glycosylated Counterparts

    Get PDF
    The programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis plays a central role in suppression of anti-tumor immunity. Blocking the axis by targeting PD-L1 with monoclonal antibodies is an effective and already clinically approved approach to treat cancer patients. Glyco-engineering technology can be used to optimize different properties of monoclonal antibodies, for example, binding to FcγRs. We generated two glycosylation variants of the same anti-PD-L1 antibody: one bearing core fucosylated N-glycans in its Fc part (92%) and its de-fucosylated counterpart (4%). The two glycosylation variants were compared to a non-glycosylated commercially available anti-PD-L1 antibody in various assays. No differences were observed regarding binding to PD-L1 and blocking of this interaction with its counter receptors PD-1 or CD80. The de-fucosylated anti-PD-L1 antibody showed increased FcγRIIIa binding resulting in enhanced antibody dependent cellular cytotoxicity (ADCC) activity against PD-L1+ cancer cells compared to the “normal”-glycosylated variant. Both glycosylation variants showed no antibody-mediated lysis of B cells and monocytes. The non-glycosylated reference antibody showed no FcγRIIIa engagement and no ADCC activity. Using mixed leukocyte reaction it was observed that the de-fucosylated anti-PD-L1 antibody induced the strongest CD8 T cell activation determined by expression of activation markers, proliferation, and cytotoxicity against cancer cells. The systematic comparison of anti-PD-L1 antibody glycosylation variants with different Fc-mediated potencies demonstrates that our glyco-optimization approach has the potential to enhance CD8 T cell-mediated anti-tumor activity which may improve the therapeutic benefit of anti-PD-L1 antibodies

    Design and engineering of bispecific antibodies: insights and practical considerations

    Get PDF
    Bispecific antibodies (bsAbs) have attracted significant attention due to their dual binding activity, which permits simultaneous targeting of antigens and synergistic binding effects beyond what can be obtained even with combinations of conventional monospecific antibodies. Despite the tremendous therapeutic potential, the design and construction of bsAbs are often hampered by practical issues arising from the increased structural complexity as compared to conventional monospecific antibodies. The issues are diverse in nature, spanning from decreased biophysical stability from fusion of exogenous antigen-binding domains to antibody chain mispairing leading to formation of antibody-related impurities that are very difficult to remove. The added complexity requires judicious design considerations as well as extensive molecular engineering to ensure formation of high quality bsAbs with the intended mode of action and favorable drug-like qualities. In this review, we highlight and summarize some of the key considerations in design of bsAbs as well as state-of-the-art engineering principles that can be applied in efficient construction of bsAbs with diverse molecular formats

    Immunoreactivity of the fully humanized therapeutic antibody PankoMab-GEX™ is an independent prognostic marker for breast cancer patients

    Get PDF
    Background Mucin-1 (MUC1, CD227), more widely known as CA15-3, is an abundantly expressed epithelial cell surface antigen and has evolved to be the most predictive serum tumour marker in breast cancer. PankoMab-GEX™, which is currently being evaluated for its therapeutic efficacy in a phase IIb clinical trial, is a glyco-optimized anti-MUC1 antibody specifically recognizing a tumour-associated MUC1 epitope (TA-MUC1). The current study aimed to analyse the immunoreactivity of PankoMabGEX™ and its correlation with established clinico-pathological variables including 10-year and overall survival in a large cohort of breast cancer patients. Methods Breast cancer tissue sections (n = 227) underwent a standardized immunohistochemical staining protocol for TA-MUC1 by using PankoMab-GEX™ as a primary antibody. The staining was evaluated by two independent observers and quantified by applying the IR-score. Results TA-MUC1 as detected by PankoMab-GEX™ was identified in 74.9% of breast cancer tissue sections. Patients were subdivided according to the subcellular localisation of TA-MUC1 and cases classified as mem-PankoMab-GEX™ (solely membranous) positive, cyt-PankoMab-GEX™ (solely cytoplasmic) positive, double positive or as completely negative were compared regarding their survival. Herein mem-PankoMab-GEX™-positive patients performed best, while double-negative ones presented with a significantly shortened survival. Positivity for mem-PankoMab-GEX™ as well as a double-negative immunophenotype turned out to be independent prognosticators for survival. Conclusions This is the first study to report on PankoMab-GEX™ in a large panel of breast cancer patients. The PankoMab-GEX™ epitope TA-MUC1 could be identified in the majority of cases and was found to be an independent prognosticator depending on its subcellular localisation. Since TA-MUC1 is known to be highly immunogenic cancers staining positive for PankoMab-GEX™ might be more compromised by host anti-tumour immune defence. Further, the observations reported here might be fundamental for selecting patients to undergo PankoMab-GEX™-containing chemotherapy protocols

    Immunoreactivity of the fully humanized therapeutic antibody PankoMab-GEX™ is an independent prognostic marker for breast cancer patients

    Get PDF
    Background Mucin-1 (MUC1, CD227), more widely known as CA15-3, is an abundantly expressed epithelial cell surface antigen and has evolved to be the most predictive serum tumour marker in breast cancer. PankoMab-GEX™, which is currently being evaluated for its therapeutic efficacy in a phase IIb clinical trial, is a glyco-optimized anti-MUC1 antibody specifically recognizing a tumour-associated MUC1 epitope (TA-MUC1). The current study aimed to analyse the immunoreactivity of PankoMabGEX™ and its correlation with established clinico-pathological variables including 10-year and overall survival in a large cohort of breast cancer patients. Methods Breast cancer tissue sections (n = 227) underwent a standardized immunohistochemical staining protocol for TA-MUC1 by using PankoMab-GEX™ as a primary antibody. The staining was evaluated by two independent observers and quantified by applying the IR-score. Results TA-MUC1 as detected by PankoMab-GEX™ was identified in 74.9% of breast cancer tissue sections. Patients were subdivided according to the subcellular localisation of TA-MUC1 and cases classified as mem-PankoMab-GEX™ (solely membranous) positive, cyt-PankoMab-GEX™ (solely cytoplasmic) positive, double positive or as completely negative were compared regarding their survival. Herein mem-PankoMab-GEX™-positive patients performed best, while double-negative ones presented with a significantly shortened survival. Positivity for mem-PankoMab-GEX™ as well as a double-negative immunophenotype turned out to be independent prognosticators for survival. Conclusions This is the first study to report on PankoMab-GEX™ in a large panel of breast cancer patients. The PankoMab-GEX™ epitope TA-MUC1 could be identified in the majority of cases and was found to be an independent prognosticator depending on its subcellular localisation. Since TA-MUC1 is known to be highly immunogenic cancers staining positive for PankoMab-GEX™ might be more compromised by host anti-tumour immune defence. Further, the observations reported here might be fundamental for selecting patients to undergo PankoMab-GEX™-containing chemotherapy protocols

    A window into the human immune system:comprehensive characterization of the complexity of antibody complementary-determining regions in functional antibodies

    Get PDF
    The human immune system uses antibodies to neutralize foreign antigens. They are composed of heavy and light chains, both with constant and variable regions. The variable region has six hypervariable loops, also known as complementary-determining regions (CDRs) that determine antibody diversity and antigen specificity. Knowledge of their significance, and certain residues present in these areas, is vital for antibody therapeutics development. This study includes an analysis of more than 11,000 human antibody sequences from the International Immunogenetics information system (IMGT). The analysis included parameters such as length distribution, overall amino acid diversity, amino acid frequency per CDR and residue position within antibody chains. Overall, our findings confirm existing knowledge, such as CDRH3‘s high length diversity and amino acid variability, increased aromatic residue usage, particularly tyrosine, charged and polar residues like aspartic acid, serine, and the flexible residue glycine. Specific residue positions within each CDR influence these occurrences, implying a unique amino acid type distribution pattern. We compared amino acid type usage in CDRs and non-CDR regions, both in globular and transmembrane proteins, which revealed distinguishing features, such as increased frequency of tyrosine, serine, aspartic acid, and arginine. These findings should prove useful for future optimization, improvement of affinity, synthetic antibody library design, or the creation of antibodies de-novo in silico.</p

    Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    No full text
    IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich) and hematological (CD20) cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated
    corecore