183 research outputs found

    Conditions for inflation in an initially inhomogeneous universe

    Get PDF
    Using a long wavelength iteration scheme to solve Einstein's equations near the Big-Bang singularity of a universe driven by a massive scalar field, we find how big initial quasi-isotropic inhomogeneities can be before they can prevent inflation to set in.Comment: 9 pages, plain Tex, gr-qc/yymmnn

    String-Dominated Cosmology

    Full text link
    If string theory controls physics at the string scale, the dynamics of the early universe before the GUT era will be governed by the low-energy string equations of motion. Studying these equations for FRW spacetimes, we find that depending on the initial conditions when the stringy era starts, and on the time when it ends, there are a wide variety of qualitatively distinct types of evolution. We classify these, and present the general solution to the equations of motion

    Can Gravitational Waves Prevent Inflation?

    Get PDF
    To investigate the cosmic no hair conjecture, we analyze numerically 1-dimensional plane symmetrical inhomogeneities due to gravitational waves in vacuum spacetimes with a positive cosmological constant. Assuming periodic gravitational pulse waves initially, we study the time evolution of those waves and the nature of their collisions. As measures of inhomogeneity on each hypersurface, we use the 3-dimensional Riemann invariant I≡ (3) ⁣Rijkl (3) ⁣Rijkl{\cal I}\equiv {}~^{(3)\!}R_{ijkl}~^{(3)\!}R^{ijkl} and the electric and magnetic parts of the Weyl tensor. We find a temporal growth of the curvature in the waves' collision region, but the overall expansion of the universe later overcomes this effect. No singularity appears and the result is a ``no hair" de Sitter spacetime. The waves we study have amplitudes between 0.020Λ≀I1/2≀125.0Λ0.020\Lambda \leq {\cal I}^{1/2} \leq 125.0\Lambda and widths between 0.080lH≀l≀2.5lH0.080l_H \leq l \leq 2.5l_H, where lH=(Λ/3)−1/2l_H=(\Lambda/3)^{-1/2}, the horizon scale of de Sitter spacetime. This supports the cosmic no hair conjecture.Comment: LaTeX, 11 pages, 3 figures are available on request <To [email protected] (Hisa-aki SHINKAI)>, WU-AP/29/9

    Junction Conditions of Friedmann-Robertson-Walker Space-Times

    Full text link
    We complete a classification of junctions of two Friedmann-Robertson-Walker space-times bounded by a spherical thin wall. Our analysis covers super-horizon bubbles and thus complements the previous work of Berezin, Kuzumin and Tkachev. Contrary to sub-horizon bubbles, various topology types for super-horizon bubbles are possible, regardless of the sign of the extrinsic curvature. We also derive a formula for the peculiar velocity of a domain wall for all types of junction.Comment: 7 pages, LaTeX, figures are not included (available on request by regular mail), WU-AP/31/9

    On the fate of vacuum bubbles on matter backgrounds

    Full text link
    In this letter we discuss cosmological first order phase transitions with de Sitter bubbles nucleating on (inhomogeneous) matter backgrounds. The de Sitter bubble can be a toy model for an inflationary phase of universes like our own. Using the thin wall approximation and the Israel junction method we trace the classical evolution of the formed bubbles within a compound model. We first address homogeneous ambient space (FRW model) and already find that bubbles nucleated in a dust dominated background cannot expand. For an inhomogeneous dust background (LTB model) we describe cases with at least initially expanding bubbles. Yet, an ensuing passage of the bubble wall through ambient curvature inhomogeneities remains unnoticed for observers inside the bubble. Notable effects also for interior observers are found in the case of a rapid background phase transition in a FRW model.Comment: 4 pages, 2 figures, proceedings (Annalen der Physik) of the Grassmannian Conference in Fundamental Cosmology (Grasscosmofun'09) Szczecin, Poland, 14-19 September 200

    Choptuik scaling in null coordinates

    Get PDF
    A numerical simulation is performed of the gravitational collapse of a spherically symmetric scalar field. The algorithm uses the null initial value formulation of the Einstein-scalar equations, but does {\it not} use adaptive mesh refinement. A study is made of the critical phenomena found by Choptuik in this system. In particular it is verified that the critical solution exhibits periodic self-similarity. This work thus provides a simple algorithm that gives verification of the Choptuik results.Comment: latex (revtex), 6 figures included in the fil

    Onset of inflation in inhomogeneous cosmology

    Full text link
    We study how the initial inhomogeneities of the universe affect the onset of inflation in the closed universe. We consider the model of a chaotic inflation which is driven by a massive scalar field. In order to construct an inhomogeneous universe model, we use the long wavelength approximation ( the gradient expansion method ). We show the condition of the inhomogeneities for the universe to enter the inflationary phase.Comment: 22 pages including 12 eps figures, RevTe
    • 

    corecore