1,026 research outputs found

    Hartree-Fock and Many-Body Perturbation Theory with Correlated Realistic NN-Interactions

    Full text link
    We employ correlated realistic nucleon-nucleon interactions for the description of nuclear ground states throughout the nuclear chart within the Hartree-Fock approximation. The crucial short-range central and tensor correlations, which are induced by the realistic interaction and cannot be described by the Hartree-Fock many-body state itself, are included explicitly by a state-independent unitary transformation in the framework of the unitary correlation operator method (UCOM). Using the correlated realistic interaction V_UCOM resulting from the Argonne V18 potential, bound nuclei are obtained already on the Hartree-Fock level. However, the binding energies are smaller than the experimental values because long-range correlations have not been accounted for. Their inclusion by means of many-body perturbation theory leads to a remarkable agreement with experimental binding energies over the whole mass range from He-4 to Pb-208, even far off the valley of stability. The observed perturbative character of the residual long-range correlations and the apparently small net effect of three-body forces provides promising perspectives for a unified nuclear structure description.Comment: 14 pages, 8 figures, 3 tables, using REVTEX

    Spectrum of the Schr\"odinger operator in a perturbed periodically twisted tube

    Full text link
    We study Dirichlet Laplacian in a screw-shaped region, i.e. a straight twisted tube of a non-circular cross section. It is shown that a local perturbation which consists of "slowing down" the twisting in the mean gives rise to a non-empty discrete spectrum.Comment: LaTeX2e, 10 page

    Properties of Nambu-Goldstone Bosons in a Single-Component Bose-Einstein Condensate

    Full text link
    We theoretically study the properties of Nambu-Goldstone bosons in an interacting single-component Bose-Einstein condensate (BEC). We first point out that the proofs of Goldstone's theorem by Goldstone, et al. [Phys. Rev. {\bf 127} (1962) 965] may be relevant to distinct massless modes of the BEC: whereas the first proof deals with the poles of the single-particle Green's function G^\hat{G}, the second one concerns those of the two-particle Green's function. Thus, there may be multiple Nambu-Goldstone bosons even in the single-component BEC with broken U(1) symmetry. The second mode turns out to have an infinite lifetime in the long-wavelength limit in agreement with the conventional viewpoint. In contrast, the first mode from G^\hat{G}, i.e., the Bogoliubov mode in the weak-coupling regime, is shown to be a "bubbling" mode fluctuating temporally out of and back into the condensate. The substantial lifetime originates from an "improper" structure of the self-energy inherent in the BEC, which has been overlooked so far and will be elucidated here, and removes various infrared divergences pointed out previously.Comment: 9 pages, 6 gigure

    Polymers in Curved Boxes

    Full text link
    We apply results derived in other contexts for the spectrum of the Laplace operator in curved geometries to the study of an ideal polymer chain confined to a spherical annulus in arbitrary space dimension D and conclude that the free energy compared to its value for an uncurved box of the same thickness and volume, is lower when D<3D < 3, stays the same when D=3D = 3, and is higher when \mbox{D>3D > 3}. Thus confining an ideal polymer chain to a cylindrical shell, lowers the effective bending elasticity of the walls, and might induce spontaneous symmetry breaking, i.e. bending. (Actually, the above mentioned results show that {\em {any}} shell in D=3D = 3 induces this effect, except for a spherical shell). We compute the contribution of this effect to the bending rigidities in the Helfrich free energy expression.Comment: 20 pages RevTeX, epsf; 4 figures; submitted to Macromoledule

    A Hardy inequality in twisted waveguides

    Full text link
    We show that twisting of an infinite straight three-dimensional tube with non-circular cross-section gives rise to a Hardy-type inequality for the associated Dirichlet Laplacian. As an application we prove certain stability of the spectrum of the Dirichlet Laplacian in locally and mildly bent tubes. Namely, it is known that any local bending, no matter how small, generates eigenvalues below the essential spectrum of the Laplacian in the tubes with arbitrary cross-sections rotated along a reference curve in an appropriate way. In the present paper we show that for any other rotation some critical strength of the bending is needed in order to induce a non-empty discrete spectrum.Comment: LaTeX, 20 page

    Effects of Monovalent and Divalent Cations on Ca2+ Fluxes Across Chromaffin Secretory Membrane Vesicles

    Get PDF
    Abstract: Bovine chromaffin secretory vesicle ghosts loaded with Na+ were found to take up Ca2+ when incubated in K+ media or in sucrose media containing micromolar concentrations of free Ca2+. Li+- or choline+loaded ghosts did not take up Ca2+. The Ca2+ accumulated by Na+-loaded ghosts could be released by the Ca2+ ionophore A23187, but not by EGTA. Ca2+ uptake was inhibited by external Sr2+, Na +, Li +, or choline +. All the 45Ca2+ accumulated by Na+-dependent Ca2+ uptake could be released by external Na +, indicating that both Ca2+ influx and efflux occur in a Na+-dependent manner. Na + -dependent Ca2+ uptake and release were only slightly inhibited by Mg2+. In the presence of the Na+ ionophore Monensin the Ca2+ uptake by Na +-loaded ghosts was reduced. Ca2+ sequestered by the Na+-dependent mechanism could also be released by external Ca2+ or Sr2+ but not by Mg2+, indicating the presence of a Ca2+/Ca2+ exchange activity in secretory membrane vesicles. This Ca2+/Ca2+ exchange system is inhibited by Mg2+, but not by Sr2+. The Na + -dependent Ca2+ uptake system in the presence of Mg2+ is a saturable process with an apparent Km of 0.28 μM and a Vmax= 14.5 nmol min−1 mg protein−1. Ruthenium red inhibited neither the Na+/Ca2+ nor the Ca2+/Ca2+ exchange, even at high concentrations

    Neutrino Masses and the Gluino Axion Model

    Get PDF
    We extend the recently proposed gluino axion model to include neutrino masses. We discuss how the canonical seesaw model and the Higgs triplet model may be realized in this framework. In the former case, the heavy singlet neutrinos are contained in superfields which do not have any vacuum expectation value, whereas the gluino axion is contained in one which does. We also construct a specific renormalizable model which realizes the mass scale relationship MSUSYfa2/MUM_{SUSY} \sim f_a^2/M_U, where faf_a is the axion decay constant and MUM_U is a large effective mass parameter.Comment: 8 pages, no figur

    Once again on electromagnetic properties of a domain wall interacting with charged fermions

    Get PDF
    The response to a magnetic flux is considered of the vacuum state of charged Dirac fermions interacting with a domain wall made of a neutral spinless field in (3+1) dimensions with the fermion mass having a phase variation across the wall. It is pointed out that due to simple C parity arguments the spontaneous magnetization for this system is necessarily zero, thus invalidating some claims to the contrary in the literature. The cancellation of the spontaneous magnetization is explicitly demonstrated in a particular class of models. The same calculation produces a general formula for the electric charge density induced by the magnetic flux -- an effect previously discussed in the literature for axionic domain walls. The distribution of the induced charge is calculated in specific models.Comment: 15 page

    A Gapless Theory of Bose-Einstein Condensation in Dilute Gases at Finite Temperature

    Full text link
    In this paper we develop a gapless theory of BEC which can be applied to both trapped and homogeneous gases at zero and finite temperature. The many-body Hamiltonian for the system is written in a form which is approximately quadratic with higher order cubic and quartic terms. The quadratic part is diagonalized exactly by transforming to a quasiparticle basis, while the non-quadratic terms are dealt with using first and second order perturbation theory. The conventional treatment of these terms, based on factorization approximations, is shown to be inconsistent. Infra-red divergences can appear in individual terms of the perturbation expansion, but we show analytically that the total contribution beyond quadratic order is finite. The resulting excitation spectrum is gapless and the energy shifts are small for a dilute gas away from the critical region, justifying the use of perturbation theory. Ultra-violet divergences can appear if a contact potential is used to describe particle interactions. We show that the use of this potential as an approximation to the two-body T-matrix leads naturally to a high-energy renormalization. The theory developed in this paper is therefore well-defined at both low and high energy and provides a systematic description of Bose-Einstein condensation in dilute gases. It can therefore be used to calculate the energies and decay rates of the excitations of the system at temperatures approaching the phase transition.Comment: 39 pages of Revtex. 1 figur
    corecore