29,773 research outputs found
Energetic particles of the outer regions of planetary magnetospheres
High energy particles, with energies above those attainable by adiabatic or steady-state electric field acceleration, have been observed in and around the outer regions of planetary magnetospheres. Acceleration by large amplitude sporadic cross-tail electric fields over an order of magnitude greater than steady-state convection fields is proposed as a source of these particles. It is suggested that such explosive electric fields will occur intermittently in the vicinity of the tail neutral line in the expansive phase of substorms. Laboratory and satellite evidence are used to estimate this electric potential for substorms at earth; values of 500 kilovolts to 2 megavolts are calculated, in agreement with particle observations. It is further suggested that these particles, which have been accelerated in the night side magnetosphere, drift to the dayside on closed field lines, and under certain interplanetary conditions can escape to regions upstream of the bow shock
Adaptive Relaxed ADMM: Convergence Theory and Practical Implementation
Many modern computer vision and machine learning applications rely on solving
difficult optimization problems that involve non-differentiable objective
functions and constraints. The alternating direction method of multipliers
(ADMM) is a widely used approach to solve such problems. Relaxed ADMM is a
generalization of ADMM that often achieves better performance, but its
efficiency depends strongly on algorithm parameters that must be chosen by an
expert user. We propose an adaptive method that automatically tunes the key
algorithm parameters to achieve optimal performance without user oversight.
Inspired by recent work on adaptivity, the proposed adaptive relaxed ADMM
(ARADMM) is derived by assuming a Barzilai-Borwein style linear gradient. A
detailed convergence analysis of ARADMM is provided, and numerical results on
several applications demonstrate fast practical convergence.Comment: CVPR 201
Synthetic aperture radar target simulator
A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal
Triangular buckling patterns of twisted inextensible strips
When twisting a strip of paper or acetate under high longitudinal tension,
one observes, at some critical load, a buckling of the strip into a regular
triangular pattern. Very similar triangular facets have recently been observed
in solutions to a new set of geometrically-exact equations describing the
equilibrium shape of thin inextensible elastic strips. Here we formulate a
modified boundary-value problem for these equations and construct post-buckling
solutions in good agreement with the observed pattern in twisted strips. We
also study the force-extension and moment-twist behaviour of these strips by
varying the mode number n of triangular facets
Hamiltonian Theory of Adiabatic Motion of Relativistic Charged Particles
A general Hamiltonian theory for the adiabatic motion of relativistic charged
particles confined by slowly-varying background electromagnetic fields is
presented based on a unified Lie-transform perturbation analysis in extended
phase space (which includes energy and time as independent coordinates) for all
three adiabatic invariants. First, the guiding-center equations of motion for a
relativistic particle are derived from the particle Lagrangian. Covariant
aspects of the resulting relativistic guiding-center equations of motion are
discussed and contrasted with previous works. Next, the second and third
invariants for the bounce motion and drift motion, respectively, are obtained
by successively removing the bounce phase and the drift phase from the
guiding-center Lagrangian. First-order corrections to the second and third
adiabatic invariants for a relativistic particle are derived. These results
simplify and generalize previous works to all three adiabatic motions of
relativistic magnetically-trapped particles.Comment: 20 pages, LaTeX, to appear in Physics of Plasmas (Aug, 2007
Intermittency and the passive nature of the magnitude of the magnetic field
It is shown that the statistical properties of the magnitude of the magnetic
field in turbulent electrically conducting media resemble, in the inertial
range, those of passive scalars in fully developed three-dimensional fluid
turbulence. This conclusion, suggested by the data from Advanced Composition
Explorer, is supported by a brief analysis of the appropriate
magnetohydrodynamic equations
Wave localization in binary isotopically disordered one-dimensional harmonic chains with impurities having arbitrary cross section and concentration
The localization length for isotopically disordered harmonic one-dimensional
chains is calculated for arbitrary impurity concentration and scattering cross
section. The localization length depends on the scattering cross section of a
single scatterer, which is calculated for a discrete chain having a wavelength
dependent pulse propagation speed. For binary isotopically disordered systems
composed of many scatterers, the localization length decreases with increasing
impurity concentration, reaching a mimimum before diverging toward infinity as
the impurity concentration approaches a value of one. The concentration
dependence of the localization length over the entire impurity concentration
range is approximated accurately by the sum of the behavior at each limiting
concentration. Simultaneous measurements of Lyapunov exponent statistics
indicate practical limits for the minimum system length and the number of
scatterers to achieve representative ensemble averages. Results are discussed
in the context of future investigations of the time-dependent behavior of
disordered anharmonic chains.Comment: 8 pages, 10 figures, submitted to PR
The comfortable roller coaster -- on the shape of tracks with constant normal force
A particle that moves along a smooth track in a vertical plane is influenced
by two forces: gravity and normal force. The force experienced by roller
coaster riders is the normal force, so a natural question to ask is: what shape
of the track gives a normal force of constant magnitude? Here we solve this
problem. It turns out that the solution is related to the Kepler problem; the
trajectories in velocity space are conic sections.Comment: 10 pages, 4 figure
Cosmological Constraints from Multiple Probes in the Dark Energy Survey
The combination of multiple observational probes has long been advocated as a powerful technique to constrain cosmological parameters, in particular dark energy. The Dark Energy Survey has measured 207 spectroscopically confirmed type Ia supernova light curves, the baryon acoustic oscillation feature, weak gravitational lensing, and galaxy clustering. Here we present combined results from these probes, deriving constraints on the equation of state, w, of dark energy and its energy density in the Universe. Independently of other experiments, such as those that measure the cosmic microwave background, the probes from this single photometric survey rule out a Universe with no dark energy, finding w = −0.80^(+0.09)_(−0.11). The geometry is shown to be consistent with a spatially flat Universe, and we obtain a constraint on the baryon density of Ω_b = 0.069^(+0.009)_(−0.012) that is independent of early Universe measurements. These results demonstrate the potential power of large multiprobe photometric surveys and pave the way for order of magnitude advances in our constraints on properties of dark energy and cosmology over the next decade
- …