3,234 research outputs found
NORTH AMERICAN INTEGRATION IN AGRICULTURE: A SURVEY PAPER
This paper surveys the economic literature about North American integration in the agri-food sector. The purpose of this survey is two-fold: it summarizes the lessons learned, and it identifies areas where further research could provide valuable input into policy discussions. As the integration of North American agriculture progresses, the range of agri-food policies with strictly domestic effects becomes increasingly narrow. Thus, policymakers in North America need to consider the effects that their decisions will have on other NAFTA countries, as well as the impact that decisions by other NAFTA governments will have at home. The paper is organized as follows. Section 2 identifies the major factors contributing to integration and comments on their relative importance. Section 3 summarizes research into the indicators of integration. These studies focus on price co-movements and trade flow data. Section 4 outlines the state of current knowledge regarding foreign direct investment in the agri-food sector, while Section 5 assesses the impact of integration on the structure and performance of the sector. Section 6 discusses opportunities for further integration in the sector, and Section 7 concludes the paper. Throughout the paper, gaps in the knowledge base are highlighted, along with suggested areas for further research.Industrial Organization,
Inclusions in diamonds constrain thermo-chemical conditions during Mesozoic metasomatism of the Kaapvaal cratonic mantle
Fluid/melt inclusions in diamonds, which were encapsulated during a metasomatic event and over a short period of time, are isolated from their surrounding mantle, offering the opportunity to constrain changes in the sub-continental lithospheric mantle (SCLM) that occurred during individual thermo-chemical events, as well as the composition of the fluids involved and their sources. We have analyzed a suite of 8 microinclusion-bearing diamonds from the Group I De Beers Pool kimberlites, South Africa, using FTIR, EPMA and LA-ICP-MS. Seven of the diamonds trapped incompatible-element-enriched saline high density fluids (HDFs), carry peridotitic mineral microinclusions, and substitutional nitrogen almost exclusively in A-centers. This low-aggregation state of nitrogen indicates a short mantle residence times and/or low mantle ambient temperature for these diamonds. A short residence time is favored because, elevated thermal conditions prevailed in the South African lithosphere during and following the Karoo flood basalt volcanism at âŒ180 Ma, thus the saline metasomatism must have occurred close to the time of kimberlite eruptions at âŒ85 Ma. Another diamond encapsulated incompatible-element-enriched silicic HDFs and has 25% of its nitrogen content residing in B-centers, implying formation during an earlier and different metasomatic event that likely relates to the Karoo magmatism at ca. 180 Ma.
Thermometry of mineral microinclusions in the diamonds carrying saline HDFs, based on MgâFe exchange between garnetâorthopyroxene (Opx)/clinopyroxene (Cpx)/olivine and the OpxâCpx thermometer, yield temperatures between 875â1080â°C at 5 GPa. These temperatures overlap with conditions recorded by touching inclusion pairs in diamonds from the De Beers Pool kimberlites, which represent the mantle ambient conditions just before eruption, and are altogether lower by 150â250â°C compared to PâT gradients recorded by peridotite xenoliths from the same locality. Oxygen fugacity () differs as well. The calculated for the saline HDF compositions ( to â1.34) are higher by about a log unit compared with that recorded by xenoliths at 4â7 GPa.
We conclude that enriched saline HDFs mediated the metasomatism that preceded Group I kimberlite eruptions in the southwestern Kaapvaal craton, and that their âcold and oxidizedâ nature reflects their derivation from a deep subducting slab. This event had little impact on the temperature and redox state of the Kaapvaal lithosphere as a reservoir, however, it likely affected its properties along limited metasomatized veins and their wall rock. To reconcile the temperature and oxygen fugacity discrepancy between inclusions in diamonds and xenoliths, we argue that xenoliths did not equilibrate during the last saline metasomatic event or kimberlite eruption. Thus the PâTâ gradients they record express pre-existing lithospheric conditions that were likely established during the last major thermal event in the Kaapvaal craton (i.e. the Karoo magmatism at ca. 180 Ma)
Recommended from our members
Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial
Sediment cores recovered by the Dead Sea Deep Drilling Project (DSDDP) from the deepest basin of the hypersaline, terminal Dead Sea (lake floor at âŒ725 m below mean sea level) reveal the detailed climate history of the lake's watershed during the last interglacial period (Marine Isotope Stage 5; MIS5). The results document both a more intense aridity during MIS5 than during the Holocene, and the moderating impacts derived from the intense MIS5e African Monsoon. Early MIS5e (âŒ133â128 ka) was dominated by hyperarid conditions in the Eastern MediterraneanâLevant, indicated by thick halite deposition triggered by a lake-level drop. Halite deposition was interrupted however, during the MIS5e peak (âŒ128â122 ka) by sequences of flood deposits, which are coeval with the timing of the intense precession-forced African monsoon that generated Mediterranean sapropel S5. A subsequent weakening of this humidity source triggered extreme aridity in the Dead Sea watershed and resulting in the biggest known lake level drawdown in its history, reflected by the deposition of thick salt layers, and a capping pebble layer corresponding to a hiatus at âŒ116â110 ka. The DSDDP core provides the first evidence for a direct association of the African monsoon with mid subtropical latitude climate systems effecting the Dead Sea watershed. Combined with coeval deposition of Arabia and southern Negev speleothems, Arava travertines, and calcification of Red Sea corals, the evidence points to a climatically wet corridor that could have facilitated homo sapiens migration âout of Africaâ during the MIS5e peak. The hyperaridity documented during MIS5e may provide an important analogue for future warming of arid regions of the Eastern MediterraneanâLevant
A Group-Based Yule Model for Bipartite Author-Paper Networks
This paper presents a novel model for author-paper networks, which is based
on the assumption that authors are organized into groups and that, for each
research topic, the number of papers published by a group is based on a
success-breeds-success model. Collaboration between groups is modeled as random
invitations from a group to an outside member. To analyze the model, a number
of different metrics that can be obtained in author-paper networks were
extracted. A simulation example shows that this model can effectively mimic the
behavior of a real-world author-paper network, extracted from a collection of
900 journal papers in the field of complex networks.Comment: 13 pages (preprint format), 7 figure
Recommended from our members
Enriched Basalts at Segment Centers: The Lucky Strike (37°17âČN) and Menez Gwen (37°50âČN) Segments of the MidâAtlantic Ridge
Basalts from the Mid-Atlantic Ridge change progressively in composition with increasing distance from the Azores platform. Study of the Lucky Strike and Menez Gwen segments reveals much complexity in the gradient. Both segments contain only basalts enriched relative to normal mid-oceanic ridge basalt, but in two distinct groups. Moderately enriched basalts occur throughout the segments, with proximal Menez Gwen enriched relative to Lucky Strike. Highly enriched basalts occur at segment centers. Incompatible element ratios of the highly enriched basalts exceed those of the Azores platform, while isotopic compositions are less enriched. These observations can be explained by a low-degree melt of garnet-bearing Azores mantle added to mantle depleted by previous melt extraction. Melting this âmetasomatizedâ mantle produces lavas that match the enriched samples. The Azores gradient cannot be explained by simple two-component mixing; rather, it reflects recent melt extraction and addition processes related to southward flow of the Azores plume. The Azores gradient also permits tests of segmentation models. Central supply models predict step functions in chemical compositions between segments. Within-segment gradients require vertical supply. Central supply is supported by robust central volcanoes, thicker crust at segment centers, and a step function in isotopes between the segments. The lava diversity at segment centers, however, requires batches of distinct magma that are preserved through melting and melt delivery. Within-segment gradients in moderately incompatible element ratios support a component of multiple supply. The data suggest partial homogenization of magma within a segment and preferential melt focusing to segment centers with some vertical transport.Earth and Planetary Science
Radiocarbon Reservoir Ages as Freshwater-Brine Monitors in Lake Lisan, Dead Sea System
A continuous and high-resolution record of the radiocarbon reservoir age (RA) has been recovered from the primary aragonites that were deposited from the last glacial Lake Lisan. The RA is calculated as the difference between the measured 14C âapparentâ age in the aragonite and the atmospheric age at any particular time. The RA shows temporal decreases during the time interval of ~28 to ~18 ka cal BP. This behavior is attributed to a continuous addition of low RA-high bicarbonate freshwater into the high RA-Ca-chloride (low bicarbonate) brine solution filling the lake. The mixing of the brine with freshwater drives the precipitation of CaCO3 in the form of aragonite from the lake epilimnion (surface layer). The runoff-brine mixture in Lake Lisan is also reflected by the Sr/Ca ratios that are positively correlated with the RA. Nevertheless, the 14C content in the epilimnion did not drop at the same rate as the atmospheric value but rather remained nearly constant. We suggest that turbulent mixing with the much saltier hypolimnion (lower layer) across the hypolimnion/epilimnion interface at a depth of about 390 m below sea level, buffered the 14C content as well as the Sr and Ca concentrations in the aragonite precipitating solution. The RA-Sr/Ca related limnological model developed here opens the way to determine the reservoir-age-corrected atmospheric ages of Lisan Formation aragonites beyond 28 ka cal BP
A Îł-secretase inhibitor, but not a Îł-secretase modulator, induced defects in BDNF axonal trafficking and signaling: evidence for a role for APP.
Clues to Alzheimer disease (AD) pathogenesis come from a variety of different sources including studies of clinical and neuropathological features, biomarkers, genomics and animal and cellular models. An important role for amyloid precursor protein (APP) and its processing has emerged and considerable interest has been directed at the hypothesis that AÎČ peptides induce changes central to pathogenesis. Accordingly, molecules that reduce the levels of AÎČ peptides have been discovered such as Îł-secretase inhibitors (GSIs) and modulators (GSMs). GSIs and GSMs reduce AÎČ levels through very different mechanisms. However, GSIs, but not GSMs, markedly increase the levels of APP CTFs that are increasingly viewed as disrupting neuronal function. Here, we evaluated the effects of GSIs and GSMs on a number of neuronal phenotypes possibly relevant to their use in treatment of AD. We report that GSI disrupted retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF), suppressed BDNF-induced downstream signaling pathways and induced changes in the distribution within neuronal processes of mitochondria and synaptic vesicles. In contrast, treatment with a novel class of GSMs had no significant effect on these measures. Since knockdown of APP by specific siRNA prevented GSI-induced changes in BDNF axonal trafficking and signaling, we concluded that GSI effects on APP processing were responsible, at least in part, for BDNF trafficking and signaling deficits. Our findings argue that with respect to anti-amyloid treatments, even an APP-specific GSI may have deleterious effects and GSMs may serve as a better alternative
GNOM v1.0: an optimized steady-state model of the modern marine neodymium cycle
Spatially distant sources of neodymium (Nd) to the ocean that carry different isotopic signatures (ΔNd) have been shown to trace out major water masses and have thus been extensively used to study large-scale features of the ocean circulation both past and current. While the global marine Nd cycle is qualitatively well understood, a complete quantitative determination of all its components and mechanisms, such as the magnitude of its sources and the paradoxical conservative behavior of ΔNd, remains elusive. To make sense of the increasing collection of observational Nd and ΔNd data, in this model description paper we present and describe the Global Neodymium Ocean Model (GNOM) v1.0, the first inverse model of the global marine biogeochemical cycle of Nd. The GNOM is embedded in a data-constrained steady-state circulation that affords spectacular computational efficiency, which we leverage to perform systematic objective optimization, allowing us to make preliminary estimates of biogeochemical parameters. Owing to its matrix representation, the GNOM model is additionally amenable to novel diagnostics that allow us to investigate open questions about the Nd cycle with unprecedented accuracy. This model is open-source and freely accessible, is written in Julia, and its code is easily understandable and modifiable for further community developments, refinements, and experiments.</p
A functional correlate of severity in alternating hemiplegia of childhood
OBJECTIVE: Mutations in ATP1A3, the gene that encodes the α3 subunit of the Na(+)/K(+) ATPase, are the primary cause of alternating hemiplegia of childhood (AHC). Correlations between different mutations and AHC severity were recently reported, with E815K identified in severe and D801N and G947R in milder cases. This study aims to explore the molecular pathological mechanisms in AHC and to identify functional correlates for mutations associated with different levels of disease severity. METHODS: Human wild type ATP1A3, and E815K, D801N and G947R mutants were expressed in Xenopus laevis oocytes and Na(+)/K(+) ATPase function measured. Structural homology models of the human α3 subunit containing AHC mutations were created. RESULTS: The AHC mutations examined all showed similar levels of reduction in forward cycling. Wild type forward cycling was reduced by coexpression with any mutant, indicating dominant negative interactions. Proton transport was measured and found to be selectively impaired only in E815K. Homology modeling showed that D801 and G947 lie within or near known cation binding sites while E815 is more distal. Despite its effect on proton transport, E815K was also distant from the proposed proton transport route. INTERPRETATION: Loss of forward cycling and dominant negativity are common and likely necessary pathomechanisms for AHC. In addition, loss of proton transport correlated with severity of AHC. D801N and G947R are likely to directly disrupt normal Na(+)/K(+) binding while E815K may disrupt forward cycling and proton transport via allosteric mechanisms yet to be elucidated
Recommended from our members
Rapid changes in meridional advection of Southern Ocean intermediate waters to the tropical Pacific during the last 30 kyr
The Southern Ocean is increasingly recognized as a key player in the general ocean thermohaline circulation and the global climate system during glacialâinterglacial transitions. In particular, the advection of Southern Ocean intermediate waters (SOIW), like Antarctic Intermediate Water and Sub-Antarctic Mode Water, to the Eastern Equatorial Pacific (EEP), through a so-called âoceanic tunnellingâ mechanism, is an important means for rapid transfer of climatic signals (such as heat, fresh water, salt, and chemical species) from high-to-low latitudes. However, information on how intermediate water advection rates changed in the past, and particularly during deglaciations, is fragmentary. We present new results for Nd isotopes (ΔNd) in cleaned foraminifera shells (Neogloboquadrina dutertrei) for the last 30 kyr at ODP Site 1240 in the EEP. N. dutertrei preferentially dwells in the lower thermocline, at the core of the Equatorial Undercurrent (EUC), and the ΔNd variability over time provides a record of the changes in the ΔNd of the EUC. Through mixing models we show that the EUC record is primarily controlled by changes in the volume transport of intermediate waters and not by Southern Ocean ΔNd changes. Southern Ocean signals in the EUC are stronger during colder intervals (Younger Dryas, last glacial maximum and Heinrich stadials 1 and 2), in agreement with tropical Atlantic intermediate water records. In addition, covariations between N. dutertrei ÎŽ13C, molecular biomarkers, and diatom productivity at Site 1240 confirm the intermediate water route as an important mechanism for the transfer of climate signals from high-to-low latitudes. Changes in the SOIW chemistry during the deglaciation are likely linked to the upwelling of âoldâ deep waters in the Southern Ocean and subsequent export as intermediate waters, which are coeval with the atmospheric CO2 rise. Moreover, a comparison of multiple proxy records for the last 30 kyr indicates a latitudinal shift and/or a change in the convection depth of intermediate waters in the Southern Ocean prior to the onset of the deglaciation
- âŠ