12,653 research outputs found
Dark states of dressed Bose-Einstein condensates
We combine the ideas of dressed Bose-Einstein condensates, where an
intracavity optical field allows one to design coupled, multicomponent
condensates, and of dark states of quantum systems, to generate a full quantum
entanglement between two matter waves and two optical waves. While the matter
waves are macroscopically populated, the two optical modes share a single
photon. As such, this system offers a way to influence the behaviour of a
macroscopic quantum system via a microscopic ``knob''.Comment: 6 pages, no figur
Complex Probabilities on R^N as Real Probabilities on C^N and an Application to Path Integrals
We establish a necessary and sufficient condition for averages over complex
valued weight functions on R^N to be represented as statistical averages over
real, non-negative probability weights on C^N. Using this result, we show that
many path-integrals for time-ordered expectation values of bosonic degrees of
freedom in real-valued time can be expressed as statistical averages over
ensembles of paths with complex-valued coordinates, and then speculate on
possible consequences of this result for the relation between quantum and
classical mechanics.Comment: 4 pages, 0 figure
Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds
A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA) from simple and substituted cycloalkenes (C5-C8) is produced in dark ozonolysis experiments in a dry chamber (RH~5%). Biogenic SOA from monoterpenes, sesquiterpenes, and oxygenated terpenes is formed by photooxidation in a humid chamber (~50% RH). Using the hygroscopicity tandem differential mobility analyzer (HTDMA), we measure the diameter-based hygroscopic growth factor (GF) of the SOA as a function of time and relative humidity. All SOA studied is found to be slightly hygroscopic, with smaller water uptake than that of typical inorganic aerosol substances. The aerosol water uptake increases with time early in the experiments for the cycloalkene SOA, but decreases with time for the biogenic SOA. This behavior could indicate competing effects between the formation of more highly oxidized polar compounds (more hygroscopic), and formation of longer-chained oligomers (less hygroscopic). All SOA also exhibit a smooth water uptake with RH with no deliquescence or efflorescence. The water uptake curves are found to be fitted well with an empirical three-parameter functional form. The measured pure organic GF values at 85% RH are between 1.09–1.16 for SOA from ozonolysis of cycloalkenes, 1.01–1.04 for sesquiterpene photooxidation SOA, and 1.06–1.11 for the monoterpene and oxygenated terpene SOA. The GF of pure SOA (GForg) in experiments in which inorganic seed aerosol is used is determined by assuming volume-weighted water uptake (Zdanovskii-Stokes-Robinson or ''ZSR'' approach) and using the size-resolved organic mass fraction measured by the Aerodyne Aerosol Mass Spectrometer. Knowing the water content associated with the inorganic fraction yields GForg values. However, for each precursor, the GForg values computed from different HTDMA-classified diameters agree with each other to varying degrees. Lack of complete agreement may be a result of the non-idealities of the solutions that are not captured by the ZSR method. Comparing growth factors from different precursors, we find that GForg is inversely proportional to the precursor molecular weight and SOA yield, which is likely a result of the fact that higher-molecular weight precursors tend to produce larger and less hygroscopic oxidation products
Evaporation-driven convective flows in suspensions of non-motile bacteria
We report a novel form of convection in suspensions of the bioluminescent marine bacterium Photobacterium phosphoreum. Suspensions of these bacteria placed in a chamber open to the air create persistent luminescent plumes most easily visible when observed in the dark. These flows are strikingly similar to the classical bioconvection pattern of aerotactic swimming bacteria, which create an unstable stratification by swimming upwards to an air-water interface, but they are a puzzle since the strain of P. phosphoreum used does not express flagella and therefore cannot swim. When microspheres were used instead of bacteria, similar flow patterns were observed, suggesting that the convective motion was not driven by bacteria but instead by the accumulation of salt at the air-water interface due to evaporation of the culture medium. Even at room temperature and humidity, and physiologically relevant salt concentrations, the water evaporation was found to be sufficient to drive convection patterns. To prove this hypothesis, experiments were complemented with a mathematical model that aimed to understand the mechanism of plume formation and the role of salt in triggering the instability. The simplified system of evaporating salty water was first studied using linear stability analysis, and then with finite element simulations. A comparison between these three approaches is presented. While evaporation-driven convection has not been discussed extensively in the context of biological systems, these results suggest that the phenomenon may be broadly relevant, particularly in those systems involving microorganisms of limited motility
Condition numbers and scale free graphs
In this work we study the condition number of the least square matrix
corresponding to scale free networks. We compute a theoretical lower bound of
the condition number which proves that they are ill conditioned. Also, we
analyze several matrices from networks generated with the linear preferential
attachment model showing that it is very difficult to compute the power law
exponent by the least square method due to the severe lost of accuracy expected
from the corresponding condition numbers.Comment: Submitted to EP
Dynamical CP Violation in Composite Higgs Models
The dynamical origin of the CP violation in electroweak theory is
investigated in composite Higgs models. The mechanism of the spontaneous CP
violation proposed in other context by Dashen is adopted to construct simple
models of the dynamical CP violation.
Within the models the size of the neutron electric dipole moment is estimated
and the constraint on the -parameter in K-meson decays is
discussed.Comment: 20 pages, 2 figures not included, uses LaTeX, HUPD-922
The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors
In the intermediate state of a thin type-I superconductor magnetic flux
penetrates in a disordered set of highly branched and fingered macroscopic
domains. To understand these shapes, we study in detail a recently proposed
"current-loop" (CL) model that models the intermediate state as a collection of
tense current ribbons flowing along the superconducting-normal interfaces and
subject to the constraint of global flux conservation. The validity of this
model is tested through a detailed reanalysis of Landau's original conformal
mapping treatment of the laminar state, in which the superconductor-normal
interfaces are flared within the slab, and of a closely-related straight-lamina
model. A simplified dynamical model is described that elucidates the nature of
possible shape instabilities of flux stripes and stripe arrays, and numerical
studies of the highly nonlinear regime of those instabilities demonstrate
patterns like those seen experimentally. Of particular interest is the buckling
instability commonly seen in the intermediate state. The free-boundary approach
further allows for a calculation of the elastic properties of the laminar
state, which closely resembles that of smectic liquid crystals. We suggest
several new experiments to explore of flux domain shape instabilities,
including an Eckhaus instability induced by changing the out-of-plane magnetic
field, and an analog of the Helfrich-Hurault instability of smectics induced by
an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to
Phys. Rev. B. Higher resolution figures may be obtained by contacting the
author
Health Information Technology in the United States: On the Cusp of Change, 2009
In this report we use the data collected for ONCHIT to focus on EHR adoption in the inpatient setting. We report on several important policy issues. These include the rate of adoption of EHRs among U.S. hospitals generally and among safety-net hospitals, changes in both state and federal policy, and the potential of EHRs to change the quality measurement enterprise
- …