350 research outputs found

    Bone and cartilage in osteoarthritis: is what's best for one good or bad for the other?

    Get PDF
    The interest in the relationship between articular cartilage and the structural and functional properties of peri-articular bone relates to the intimate contact that exists between these tissues in joints that are susceptible to the development of osteoarthritis (OA). The demonstration in several animal models that osteoporosis and decreased bone tissue modulus leads to an increased propensity for the development of post-traumatic OA is paradoxical in light of the extensive epidemiological literature indicating that individuals with high systemic bone mass, assessed by bone mineral density, are at increased risk for OA. These observations underscore the need for further studies to define the pathophysiological mechanisms involved in the interaction between subchondral bone and articular cartilage and for applying this information to the development of therapeutic interventions to improve the outcomes in patients with OA

    Capsular synovial metaplasia mimicking silicone leak of a breast prosthesis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Synovial metaplasia around a prosthesis and in particular around silicone breast implants has been noted by various investigators, but has unknown clinical significance. We report on a patient where a large amount of synovial fluid mimicked rupture of an implant. We believe this to be an unusual clinical presentation of this phenomenon. Review of the English language literature failed to identify a comparable case.</p> <p>Case presentation</p> <p>A 25-year-old woman had undergone bilateral breast augmentation for cosmetic reasons. One implant was subsequently subjected to two attempts at expansion to correct asymmetry. The patient was later found to have a large quantity of viscous fluid around the port of that same prosthesis. Histological assessment of the implant had consequently confirmed capsular synovial metaplasia. This had initially caused the suspicion of a silicone 'bleed' from the implant and had resulted in an unnecessary explantation.</p> <p>Conclusion</p> <p>Capsular synovial metaplasia should be ruled out before the removal of breast implants where a leak is suspected. Manipulation and expansion of an implant may be risk factors for the development of synovial metaplasia.</p

    Disentangling unclear nuclear breakup channels of beryllium-9 using the three-axis Dalitz plot

    Get PDF
    The three-axis Dalitz plot has been applied to the breakup of a nucleus into unequal mass fragments for the first time. The Dalitz plot allows clear identification of the various breakup channels of 9Be β†’ 2Ξ± + n process. The method has allowed the branching ratio for the 6.38 MeV level in9Be to be provisionally calculated when examining the 9Be(4He, Ξ±)Ξ±Ξ±n reaction. The effects of non-uniform angular distributions on the Dalitz plot must still be properly investigated along with the effects of contaminant reaction channels. It is proposed that this method could be used to determine the breakup branching ratio of a newly-measured level in this nucleus

    Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty

    Get PDF
    Increased failure rates due to metallic wear particle-associated adverse local tissue reactions (ALTR) is a significant clinical problem in resurfacing and total hip arthroplasty. Retrieved periprosthetic tissue of 53 cases with corrosion/conventional metallic wear particles from 285 revision operations for ALTR was selected for nano-analyses. Three major classes of hip implants associated with ALTR, metal-on-metal hip resurfacing arthroplasty (MoM HRA) and large head total hip replacement (MoM LHTHA) and non-metal-on-metal dual modular neck total hip replacement (Non-MoM DMNTHA) were included. The size, shape, distribution, element composition, and crystal structure of the metal particles were analyzed by conventional histological examination and electron microscopy with analytic tools of 2D X-ray energy dispersive spectrometry and X-ray diffraction. Distinct differences in size, shape, and element composition of the metallic particles were detected in each implant class which correlate with the histological features of severity of ALTR and variability in implant performance

    Prolonged Application of High Fluid Shear to Chondrocytes Recapitulates Gene Expression Profiles Associated with Osteoarthritis

    Get PDF
    BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA) disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2)) for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be β‰₯2-fold up-regulated and ≀0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2) in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS) induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis/progression of OA
    • …
    corecore