728 research outputs found

    Boundary effects on the scaling of the superfluid density

    Full text link
    We study numerically the influence of the substrate (boundary conditions) on the finite--size scaling properties of the superfluid density ρs\rho_s in superfluid films of thickness HH within the XY model employing the Monte Carlo method. Our results suggest that the jump ρsH/Tc\rho_s H/T_c at the Kosterlitz--Thouless transition temperature TcT_c depends on the boundary conditions.Comment: 2 pages, 1 Latex file, 1 postscript figure, 2 style file

    Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1nm and a InGaN laser diode at 444nm

    Get PDF
    We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr3+-doped KYF4 single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF4 crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time

    All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region

    Get PDF
    All-solid-state electrochromic reflectance devices for thermal emittance modulation were designed for operation in the spectral region from mid- to far-infrared wavelengths (2–40 μm). All device constituent layers were grown by magnetron sputtering. The electrochromic (polycrystalline WO3), ion conductor (Ta2O5), and Li+ ion-storage layer (amorphous WO3), optimized for their infrared (IR) optical thicknesses, are sandwiched between a highly IR reflecting Al mirror, and a 90% IR transmissive Al grid top electrode, thereby meeting the requirements for a reversible Li+ ion insertion electrochromic device to operate within the 300 K blackbody emission range. Multicycle optical switching and emittance modulation is demonstrated. The measured change in emissivity of the device is to 20%

    Equation of State for Helium-4 from Microphysics

    Full text link
    We compute the free energy of helium-4 near the lambda transition based on an exact renormalization-group equation. An approximate solution permits the determination of universal and nonuniversal thermodynamic properties starting from the microphysics of the two-particle interactions. The method does not suffer from infrared divergences. The critical chemical potential agrees with experiment. This supports a specific formulation of the functional integral that we have proposed recently. Our results for the equation of state reproduce the observed qualitative behavior. Despite certain quantitative shortcomings of our approximation, this demonstrates that ab initio calculations for collective phenomena become possible by modern renormalization-group methods.Comment: 9 pages, 6 figures, revtex updated version, journal referenc
    corecore