15,156 research outputs found

    QED Penguin Contributions To Isospin Splittings of Heavy-Light Quark Systems

    Full text link
    Recent experiments show that the isospin-violating mass splitting of the B mesons is very small, but the best fits with a QCD sum rule analysis give a splitting of at least 1.0 MeV. The isospin-violating mass splittings of the charmed mesons, on the other hand, are in agreement with experiment. In this letter we show that the inclusion of 2nd^{nd} kind QED penguin diagrams can account for this discrepancy within the errors in the QCD sum rule method.Comment: 9 pages, latex, 2 figure

    Valence Quark Distribution in A=3 Nuclei

    Full text link
    We calculate the quark distribution function for 3He/3H in a relativistic quark model of nuclear structure which adequately reproduces the nucleon approximation, nuclear binding energies, and nuclear sizes for small nuclei. The results show a clear distortion from the quark distribution function for individual nucleons (EMC effect) arising dominantly from a combination of recoil and quark tunneling effects. Antisymmetrization (Pauli) effects are found to be small due to limited spatial overlaps. We compare our predictions with a published parameterization of the nuclear valence quark distributions and find significant agreement.Comment: 18pp., revtex4, 4 fig

    Comment on "Regge Trajectories for All Flavors"

    Get PDF
    We show that Regge trajectories for all flavors suggested recently by Filipponi et al. cannot combine both meson spectroscopy and additivity of intercepts. Other defects of these trajectories are also discussed.Comment: 2 pages, LaTe

    Effective size of a trapped atomic Bose gas

    Full text link
    We investigate the temperature-dependent effective size of a trapped interacting atomic Bose gas within a mean field theory approximation. The sudden shrinking of the average length, as observed in an earlier experiment by Wang {\it et al.} [Chin. Phys. Lett. {\bf 20}, 799 (2003)], is shown to be a good indication for Bose-Einstein condensation (BEC). Our study also supports the use of the average width of a trapped Bose gas for a nondestructive calibration of its temperature.Comment: RevTex4, 6 pages, 4 eps figures, to appear in Phys. Rev.

    Stationary state volume fluctuations in a granular medium

    Get PDF
    A statistical description of static granular material requires ergodic sampling of the phase space spanned by the different configurations of the particles. We periodically fluidize a column of glass beads and find that the sequence of volume fractions phi of post-fluidized states is history independent and Gaussian distributed about a stationary state. The standard deviation of phi exhibits, as a function of phi, a minimum corresponding to a maximum in the number of statistically independent regions. Measurements of the fluctuations enable us to determine the compactivity X, a temperature-like state variable introduced in the statistical theory of Edwards and Oakeshott [Physica A {\bf 157}, 1080 (1989)].Comment: published with minor change

    Energetics of Quantum Antidot States in Quantum Hall Regime

    Full text link
    We report experiments on the energy structure of antidot-bound states. By measuring resonant tunneling line widths as function of temperature, we determine the coupling to the remote global gate voltage and find that the effects of interelectron interaction dominate. Within a simple model, we also determine the energy spacing of the antidot bound states, self consistent edge electric field, and edge excitation drift velocity.Comment: 4 pages, RevTex, 5 Postscript figure

    Measuring topology in a laser-coupled honeycomb lattice: From Chern insulators to topological semi-metals

    Get PDF
    Ultracold fermions trapped in a honeycomb optical lattice constitute a versatile setup to experimentally realize the Haldane model [Phys. Rev. Lett. 61, 2015 (1988)]. In this system, a non-uniform synthetic magnetic flux can be engineered through laser-induced methods, explicitly breaking time-reversal symmetry. This potentially opens a bulk gap in the energy spectrum, which is associated with a non-trivial topological order, i.e., a non-zero Chern number. In this work, we consider the possibility of producing and identifying such a robust Chern insulator in the laser-coupled honeycomb lattice. We explore a large parameter space spanned by experimentally controllable parameters and obtain a variety of phase diagrams, clearly identifying the accessible topologically non-trivial regimes. We discuss the signatures of Chern insulators in cold-atom systems, considering available detection methods. We also highlight the existence of topological semi-metals in this system, which are gapless phases characterized by non-zero winding numbers, not present in Haldane's original model.Comment: 30 pages, 12 figures, 4 Appendice
    corecore