16,708 research outputs found
Selective excitation of homogeneous spectral lines
It is possible, for homogeneously broadened lines, to excite selectively the
response signals, which are orders of magnitude narrower than the original
lines. The new type of echo, which allows detecting such signals, and the
formalism, useful for understanding the phenomenon, as well as the experimental
examples from NMR spectroscopy are presented.Comment: 19 pages, 8 figure
Open charm tomography of cold nuclear matter
We study the relative contribution of partonic sub-processes to D meson
production and D meson-triggered inclusive di-hadrons to lowest order in
perturbative QCD. While gluon fusion dominates the creation of large angle
DD-bar pairs, charm on light parton scattering determines the yield of single
inclusive D mesons. The distinctly different non-perturbative fragmentation of
c quarks into D mesons versus the fragmentation of quarks and gluons into light
hadrons results in a strong transverse momentum dependence of anticharm content
of the away-side charm-triggered jet. In p+A reactions, we calculate and resum
the coherent nuclear-enhanced power corrections from the final state partonic
scattering in the medium. We find that single and double inclusive open charm
production can be suppressed as much as the yield of neutral pions from
dynamical high-twist shadowing. Effects of energy loss in p+A collisions are
also investigated phenomenologically and may lead to significantly weaker
transverse momentum dependence of the nuclear attenuation.Comment: 24 pages, 21 figure
Hot Electron Effects in the 2D Superconductor-Insulator Transition
The parallel magnetic field tuned two-dimensional superconductor-insulator
transition has been investigated in ultrathin films of amorphous Bi. The
resistance is found to be independent of temperature on both sides of the
transition below approximately 120 mK. Several observations suggest that this
regime is not intrinsically "metallic" but results from the failure of the
films' electrons to cool. The onset of this temperature-independent regime can
be moved to higher temperatures by either increasing the measuring current or
the level of electromagnetic noise. Temperature scaling is successful above 120
mK. Electric field scaling can be mapped onto temperature scaling by relating
the electric fields to elevated electron temperatures. These results cast doubt
on the existence of an intrinsic metallic regime and on the independent
determination of the correlation length and dynamical critical exponents
obtained by combining the results of electric field and temperature scaling.Comment: 4 pages, 4 figure
Electrostatic Tuning of the Superconductor-Insulator Transition in Two Dimensions
Superconductivity has been induced in insulating ultra-thin films of
amorphous bismuth using the electric field effect. The screening of
electron-electron interaction was found to increase with electron concentration
in a manner correlated with the tendency towards superconductivity. This does
not preclude an increase in the density of states being important in the
development of superconductivity. The superconductor-insulator transition
appears to belong to the universality class of the three dimensional XY model.Comment: Four pages, three figures. Revised slightly to reflect referees'
comment
Space-Time Symmetries: P and CP Violation
We begin with a few remarks on an explicit construction of a
Bargmann-Wightman-Wigner-type quantum field theory [Phys. Lett. B {\bf 316},
102 (1993)] in which bosons and associated antibosons have opposite relative
intrinsic parities. We then construct Majorana ( self
conjugate) and Majorana-like ( self conjugate, chirality
operator) fields. We point out that this new structure in the space time
symmetries may be relevant to and violation.Comment: Talk presened by D. V. Ahluwalia at the III International Wigner
Symposium, Christ Church, Oxford, September 1993
Neutrino clustering and the Z-burst model
The possibility that the observed Ultra High Energy Cosmic Rays are generated
by high energy neutrinos creating "Z-bursts" in resonant interactions with the
background neutrinos has been proposed, but there are difficulties in
generating enough events with reasonable incident neutrino fluxes.
We point out that this difficulty is overcome if the background neutrinos
have coalesced into "neutrino clouds" --- a possibility previously suggested by
some of us in another context. The limitations that this mechanism for the
generation of UHECRs places on the high energy neutrino flux, on the masses of
the background neutrinos and the characteristics of the neutrino clouds are
spelled out.Comment: 13 pages and 3 figures. Contributed to the XX International Symposium
on Lepton and Photon Interactions at High Energies, Rome, July 2001, and to
the International Europhysics Conference on High Energy Physics, Budapest,
July 2001. Preprint numbers added, misprints correcte
Engineering Time-Reversal Invariant Topological Insulators With Ultra-Cold Atoms
Topological insulators are a broad class of unconventional materials that are
insulating in the interior but conduct along the edges. This edge transport is
topologically protected and dissipationless. Until recently, all existing
topological insulators, known as quantum Hall states, violated time-reversal
symmetry. However, the discovery of the quantum spin Hall effect demonstrated
the existence of novel topological states not rooted in time-reversal
violations. Here, we lay out an experiment to realize time-reversal topological
insulators in ultra-cold atomic gases subjected to synthetic gauge fields in
the near-field of an atom-chip. In particular, we introduce a feasible scheme
to engineer sharp boundaries where the "edge states" are localized. Besides,
this multi-band system has a large parameter space exhibiting a variety of
quantum phase transitions between topological and normal insulating phases. Due
to their unprecedented controllability, cold-atom systems are ideally suited to
realize topological states of matter and drive the development of topological
quantum computing.Comment: 11 pages, 6 figure
Synthetic gauge fields in synthetic dimensions
We describe a simple technique for generating a cold-atom lattice pierced by
a uniform magnetic field. Our method is to extend a one-dimensional optical
lattice into the "dimension" provided by the internal atomic degrees of
freedom, yielding a synthetic 2D lattice. Suitable laser-coupling between these
internal states leads to a uniform magnetic flux within the 2D lattice. We show
that this setup reproduces the main features of magnetic lattice systems, such
as the fractal Hofstadter butterfly spectrum and the chiral edge states of the
associated Chern insulating phases.Comment: 5+4 pages, 5+3 figures, two-column revtex; v2: discussion of role of
interactions added, Fig. 1 reshaped, minor changes, references adde
- …
