13,897 research outputs found

    Radar exploration of Venus

    Get PDF
    Spacecraft radar systems for exploration of Venu

    Quenching of the beam-plasma instability by 3-D spectra of large scale density fluctuations

    Get PDF
    A model is presented to explain the highly variable yet low level of Langmuir waves measured in situ by spacecraft when electron beams associated with Type III solar bursts are passing by; the low level of excited waves allows the propagation of such streams from the Sun to well past 1 AU without catastrophic energy losses. The model is based, first, on the existence of large scale density fluctuations that are able to efficiently diffuse small k beam unstable Langmuir waves in phase space, and, second, on the presence of a significantly isotropic nonthermal tail in the distribution function of the background electron population, which is capable of stabilizing larger k modes. The strength of the model lies in its ability to predict various levels of Langmuir waves depending on the parameters. This feature is consistent with the high variability actually observed in the measurements

    Flight Flutter Testing of the P6M

    Get PDF
    On the P6M the shake behavior, i.e., the response to random excitation at subcritical speeds of lowly damped airplane modes, is as important as the actual flutter speed. The approach is to first study the problem by means of analyses and wind-tunnel tests. These predictions are compared with flight test data obtained by spectral analysis of tape recordings of the airplane vibration responses to random aerodynamic turbulence. A similar spectrum analysis approach was used in high speed wind-tunnel tests. A resonance excitation technique was developed for low speed wind-tunnel testing, and well defined V-g curves were obtained. The effect of various parameters on both shake and flutter of T-tails with and without dihedral were studied. Preliminary flight tests yielded good correlation; they also yielded interesting information concerning a low frequency transonic snaking mode, and excitation by shed vortices

    Buneman instability in a magnetized current-carrying plasma with velocity shear

    Full text link
    Buneman instability is often driven in magnetic reconnection. Understanding how velocity shear in the beams driving the Buneman instability affects the growth and saturation of waves is relevant to turbulence, heating, and diffusion in magnetic reconnection. Using a Mathieu-equation analysis for weak cosine velocity shear together with Vlasov simulations, the effects of shear on the kinetic Buneman instability are studied in a plasma consisting of strongly magnetized electrons and cold unmagnetized ions. In the linearly unstable phase, shear enhances the coupling between oblique waves and the sheared electron beam, resulting in a wider range of unstable eigenmodes with common lower growth rates. The wave couplings generate new features of the electric fields in space, which can persist into the nonlinear phase when electron holes form. Lower hybrid instabilities simultaneously occur at k∥/k⊥∼me/mik_{\shortparallel}/k_{\perp} \sim \sqrt{m_e/m_i} with a much lower growth rate, and are not affected by the velocity shear.Comment: Accepted by Physics of Plasm

    Evaluation of the cardiovascular system during various circulatory stresses Progress report, 1 Sep. 1968 - 1 May 1969

    Get PDF
    Cardiac response to chemotherapy after myocardial infraction and diagnostic methods of heart disease in man and animal

    A computer program for the calculation of laminar and turbulent boundary layer flows

    Get PDF
    The results are presented of a study to produce a computer program to calculate laminar and turbulent boundary layer flows. The program is capable of calculating the following types of flow: (1) incompressible or compressible, (2) two dimensional or axisymmetric, and (3) flows with significant transverse curvature. Also, the program can handle a large variety of boundary conditions, such as blowing or suction, arbitrary temperature distributions and arbitrary wall heat fluxes. The program has been specialized to the calculation of equilibrium air flows and all of the thermodynamic and transport properties used are for air. For the turbulent transport properties, the eddy viscosity approach has been used. Although the eddy viscosity models are semi-empirical, the model employed in the program has corrections for pressure gradients, suction and blowing and compressibility. The basic method of approach is to put the equations of motion into a finite difference form and then solve them by use of a digital computer. The program is written in FORTRAN 4 and requires small amounts of computer time on most scientific machines. For example, most laminar flows can be calculated in less than one minute of machine time, while turbulent flows usually require three or four minutes

    Multi-beam Energy Moments of Multibeam Particle Velocity Distributions

    Full text link
    High resolution electron and ion velocity distributions, f(v), which consist of N effectively disjoint beams, have been measured by NASA's Magnetospheric Multi-Scale Mission (MMS) observatories and in reconnection simulations. Commonly used standard velocity moments generally assume a single mean-flow-velocity for the entire distribution, which can lead to counterintuitive results for a multibeam f(v). An example is the (false) standard thermal energy moment of a pair of equal and opposite cold particle beams, which is nonzero even though each beam has zero thermal energy. By contrast, a multibeam moment of two or more beams has no false thermal energy. A multibeam moment is obtained by taking a standard moment of each beam and then summing over beams. In this paper we will generalize these notions, explore their consequences and apply them to an f(v) which is sum of tri-Maxwellians. Both standard and multibeam energy moments have coherent and incoherent forms. Examples of incoherent moments are the thermal energy density, the pressure and the thermal energy flux (enthalpy flux plus heat flux). Corresponding coherent moments are the bulk kinetic energy density, the RAM pressure and the bulk kinetic energy flux. The false part of an incoherent moment is defined as the difference between the standard incoherent moment and the corresponding multibeam moment. The sum of a pair of corresponding coherent and incoherent moments will be called the undecomposed moment. Undecomposed moments are independent of whether the sum is standard or multibeam and therefore have advantages when studying moments of measured f(v).Comment: 27 single-spaced pages. Three Figure

    Anomalous latent heat in non-equilibrium phase transitions

    Full text link
    We study first-order phase transitions in a two-temperature system, where due to the time-scale separation all the basic thermodynamical quantities (free energy, entropy, etc) are well-defined. The sign of the latent heat is found to be counterintuitive: it is positive when going from the phase where the temperatures and the entropy are higher to the one where these quantities are lower. The effect exists only out of equilibrium and requires conflicting interactions. It is displayed on a lattice gas model of ferromagnetically interacting spin-1/2 particles.Comment: 4 pages, 2 figure

    Characterizing the Hofstadter butterfly's outline with Chern numbers

    Full text link
    In this work, we report original properties inherent to independent particles subjected to a magnetic field by emphasizing the existence of regular structures in the energy spectrum's outline. We show that this fractal curve, the well-known Hofstadter butterfly's outline, is associated to a specific sequence of Chern numbers that correspond to the quantized transverse conductivity. Indeed the topological invariant that characterizes the fundamental energy band depicts successive stairways as the magnetic flux varies. Moreover each stairway is shown to be labeled by another Chern number which measures the charge transported under displacement of the periodic potential. We put forward the universal character of these properties by comparing the results obtained for the square and the honeycomb geometries.Comment: Accepted for publication in J. Phys. B (Jan 2009
    • …
    corecore