12,203 research outputs found

    Urn Models and Beta-splines

    Get PDF
    Some insight into the properties of beta-splines is gained by applying the techniques of urn models. Urn models are used to construct beta-spline basis functions and to derive the basic properties of these blending functions and the corresponding beta-spline curves. Only the simple notion of linear geometric continuity and with the most elementary beta parameter are outlined. Non-linear geometric continuity leads to additional beta parameters and to more complicated basis functions. Whether urn models can give us any insight into these higher order concepts still remains to be investigated

    Periodically-driven quantum systems: Effective Hamiltonians and engineered gauge fields

    Full text link
    Driving a quantum system periodically in time can profoundly alter its long-time dynamics and trigger topological order. Such schemes are particularly promising for generating non-trivial energy bands and gauge structures in quantum-matter systems. Here, we develop a general formalism that captures the essential features ruling the dynamics: the effective Hamiltonian, but also the effects related to the initial phase of the modulation and the micro-motion. This framework allows for the identification of driving schemes, based on general N-step modulations, which lead to configurations relevant for quantum simulation. In particular, we explore methods to generate synthetic spin-orbit couplings and magnetic fields in cold-atom setups.Comment: 25 pages, 6 figures, includes Appendices (A-K). An erroneous factor of two has been corrected in the last term of Eq. C10 (Appendix C); this typo had no impact on the rest of the articl

    Quantum Hall-like effect for cold atoms in non-Abelian gauge potentials

    Full text link
    We study the transport of cold fermionic atoms trapped in optical lattices in the presence of artificial Abelian or non-Abelian gauge potentials. Such external potentials can be created in optical lattices in which atom tunneling is laser assisted and described by commutative or non-commutative tunneling operators. We show that the Hall-like transverse conductivity of such systems is quantized by relating the transverse conductivity to topological invariants known as Chern numbers. We show that this quantization is robust in non-Abelian potentials. The different integer values of this conductivity are explicitly computed for a specific non-Abelian system which leads to a fractal phase diagram.Comment: 6 pages, 2 figure

    Fractional Chern insulators of few bosons in a box: Hall plateaus from center-of-mass drifts and density profiles

    Full text link
    Realizing strongly-correlated topological phases of ultracold gases is a central goal for ongoing experiments. And while fractional quantum Hall states could soon be implemented in small atomic ensembles, detecting their signatures in few-particle settings remains a fundamental challenge. In this work, we numerically analyze the center-of-mass Hall drift of a small ensemble of hardcore bosons, initially prepared in the ground state of the Harper-Hofstadter-Hubbard model in a box potential. By monitoring the Hall drift upon release, for a wide range of magnetic flux values, we identify an emergent Hall plateau compatible with a fractional Chern insulator state: the extracted Hall conductivity approaches a fractional value determined by the many-body Chern number, while the width of the plateau agrees with the spectral and topological properties of the prepared ground state. Besides, a direct application of Streda's formula indicates that such Hall plateaus can also be directly obtained from static density-profile measurements. Our calculations suggest that fractional Chern insulators can be detected in cold-atom experiments, using available detection methods.Comment: 13 pages, 11 figures; extended version accepted for publicatio

    Buneman instability in a magnetized current-carrying plasma with velocity shear

    Full text link
    Buneman instability is often driven in magnetic reconnection. Understanding how velocity shear in the beams driving the Buneman instability affects the growth and saturation of waves is relevant to turbulence, heating, and diffusion in magnetic reconnection. Using a Mathieu-equation analysis for weak cosine velocity shear together with Vlasov simulations, the effects of shear on the kinetic Buneman instability are studied in a plasma consisting of strongly magnetized electrons and cold unmagnetized ions. In the linearly unstable phase, shear enhances the coupling between oblique waves and the sheared electron beam, resulting in a wider range of unstable eigenmodes with common lower growth rates. The wave couplings generate new features of the electric fields in space, which can persist into the nonlinear phase when electron holes form. Lower hybrid instabilities simultaneously occur at k/kme/mik_{\shortparallel}/k_{\perp} \sim \sqrt{m_e/m_i} with a much lower growth rate, and are not affected by the velocity shear.Comment: Accepted by Physics of Plasm

    Realization of uniform synthetic magnetic fields by periodically shaking an optical square lattice

    Get PDF
    Shaking a lattice system, by modulating the location of its sites periodically in time, is a powerful method to create effective magnetic fields in engineered quantum systems, such as cold gases trapped in optical lattices. However, such schemes are typically associated with space-dependent effective masses (tunneling amplitudes) and non-uniform flux patterns. In this work we investigate this phenomenon theoretically, by computing the effective Hamiltonians and quasienergy spectra associated with several kinds of lattice-shaking protocols. A detailed comparison with a method based on moving lattices, which are added on top of a main static optical lattice, is provided. This study allows the identification of novel shaking schemes, which simultaneously provide uniform effective mass and magnetic flux, with direct implications for cold-atom experiments and photonics.Comment: 15 pages, 10 eps figure

    Topological phases in a two-dimensional lattice: Magnetic field versus spin-orbit coupling

    Full text link
    In this work, we explore the rich variety of topological states that arise in two-dimensional systems, by considering the competing effects of spin-orbit couplings and a perpendicular magnetic field on a honeycomb lattice. Unlike earlier approaches, we investigate minimal models in order to clarify the effects of the intrinsic and Rashba spin-orbit couplings, and also of the Zeeman splitting, on the quantum Hall states generated by the magnetic field. In this sense, our work provides an interesting path connecting quantum Hall and quantum spin Hall physics. First, we consider the properties of each term individually and we analyze their similarities and differences. Secondly, we investigate the subtle competitions that arise when these effects are combined. We finally explore the various possible experimental realizations of our model.Comment: 19 pages, 15 figure
    corecore