7,650 research outputs found

    Kodaira-Spencer formality of products of complex manifolds

    Get PDF
    We shall say that a complex manifold XX is emph{Kodaira-Spencer formal} if its Kodaira-Spencer differential graded Lie algebra AX0,(ThetaX)A^{0,*}_X(Theta_X) is formal; if this happen, then the deformation theory of XX is completely determined by the graded Lie algebra H(X,ThetaX)H^*(X,Theta_X) and the base space of the semiuniversal deformation is a quadratic singularity.. Determine when a complex manifold is Kodaira-Spencer formal is generally difficult and we actually know only a limited class of cases where this happen. Among such examples we have Riemann surfaces, projective spaces, holomorphic Poisson manifolds with surjective anchor map H(X,OmegaX1)oH(X,ThetaX)H^*(X,Omega^1_X) o H^*(X,Theta_X) and every compact K"{a}hler manifold with trivial or torsion canonical bundle. In this short note we investigate the behavior of this property under finite products. Let X,YX,Y be compact complex manifolds; we prove that whenever XX and YY are K"{a}hler, then XimesYX imes Y is Kodaira-Spencer formal if and only if the same holds for XX and YY. A revisit of a classical example by Douady shows that the above result fails if the K"{a}hler assumption is droppe

    Radiative polarization of electrons in a strong laser wave

    Full text link
    We reanalyze the problem of radiative polarization of electrons brought into collision with a circularly polarized strong plane wave. We present an independent analytical verification of formulae for the cross section given by D.\,Yu. Ivanov et al [Eur.\ Phys.\ J. C \textbf{36}, 127 (2004)]. By choosing the exact electron's helicity as the spin quantum number we show that the self-polarization effect exists only for the moderately relativistic electrons with energy γ=E/mc210\gamma = E/mc^2 \lesssim 10 and only for a non-head-on collision geometry. In these conditions polarization degree may achieve the values up to 65%, but the effective polarization time is found to be larger than 1\,s even for a high power optical or infrared laser with intensity parameter ξ=Emc2/Ecω0.1\xi = |{\bf E}| m c^2/E_c \hbar \omega \sim 0.1 (Ec=m2c3/eE_c = m^2 c^3/e \hbar). This makes such a polarization practically unrealizable. We also compare these results with the ones of some papers where the high degree of polarization was predicted for ultrarelativistic case. We argue that this apparent contradiction arises due to the different choice of the spin quantum numbers. In particular, the quantum numbers which provide the high polarization degree represent neither helicity nor transverse polarization, that makes the use of them inconvenient in practice.Comment: minor changes compared to v3; to appear in PR

    Possible Implications of Asymmetric Fermionic Dark Matter for Neutron Stars

    Get PDF
    We consider the implications of fermionic asymmetric dark matter for a "mixed neutron star" composed of ordinary baryons and dark fermions. We find examples, where for a certain range of dark fermion mass -- when it is less than that of ordinary baryons -- such systems can reach higher masses than the maximal values allowed for ordinary ("pure") neutron stars. This is shown both within a simplified, heuristic Newtonian analytic framework with non-interacting particles and via a general relativistic numerical calculation, under certain assumptions for the dark matter equation of state. Our work applies to various dark fermion models such as mirror matter models and to other models where the dark fermions have self interactions.Comment: 20 pages, 6 figure

    Absence of structural correlations of magnetic defects in heavy fermion LiV2O4

    Full text link
    Magnetic defects have pronounced effects on the magnetic properties of the face-centered cubic compound LiV2O4. The magnetic defects arise from crystal defects present within the normal spinel structure. High-energy x-ray diffraction studies were performed on LiV2O4 single crystals to search for superstructure peaks or any other evidence of periodicity in the arrangement of the crystal defects present in the lattice. Entire reciprocal lattice planes are mapped out with help of synchrotron radiation. No noticeable differences in the x-ray diffraction data between a crystal with high magnetic defect concentration and a crystal with low magnetic defect concentration have been found. This indicates the absence of any long-range periodicity or short-range correlations in the arrangements of the crystal/magnetic defects.Comment: 6 pages, 4 figure

    Characterizing the Hofstadter butterfly's outline with Chern numbers

    Full text link
    In this work, we report original properties inherent to independent particles subjected to a magnetic field by emphasizing the existence of regular structures in the energy spectrum's outline. We show that this fractal curve, the well-known Hofstadter butterfly's outline, is associated to a specific sequence of Chern numbers that correspond to the quantized transverse conductivity. Indeed the topological invariant that characterizes the fundamental energy band depicts successive stairways as the magnetic flux varies. Moreover each stairway is shown to be labeled by another Chern number which measures the charge transported under displacement of the periodic potential. We put forward the universal character of these properties by comparing the results obtained for the square and the honeycomb geometries.Comment: Accepted for publication in J. Phys. B (Jan 2009

    Forcing function control of Faraday wave instabilities in viscous shallow fluids

    Full text link
    We investigate the relationship between the linear surface wave instabilities of a shallow viscous fluid layer and the shape of the periodic, parametric-forcing function (describing the vertical acceleration of the fluid container) that excites them. We find numerically that the envelope of the resonance tongues can only develop multiple minima when the forcing function has more than two local extrema per cycle. With this insight, we construct a multi-frequency forcing function that generates at onset a non-trivial harmonic instability which is distinct from a subharmonic response to any of its frequency components. We measure the corresponding surface patterns experimentally and verify that small changes in the forcing waveform cause a transition, through a bicritical point, from the predicted harmonic short-wavelength pattern to a much larger standard subharmonic pattern. Using a formulation valid in the lubrication regime (thin viscous fluid layer) and a WKB method to find its analytic solutions, we explore the origin of the observed relation between the forcing function shape and the resonance tongue structure. In particular, we show that for square and triangular forcing functions the envelope of these tongues has only one minimum, as in the usual sinusoidal case.Comment: 12 pages, 10 figure

    Multiple Quantum NMR Dynamics in Dipolar Ordered Spin Systems

    Full text link
    We investigate analytically and numerically the Multiple Quantum (MQ) NMR dynamics in systems of nuclear spins 1/2 coupled by the dipole-dipole interactions in the case of the dipolar ordered initial state. We suggest two different methods of MQ NMR. One of them is based on the measurement of the dipolar temperature in the quasi-equilibrium state which establishes after the time of order T2 after the MQ NMR experiment. The other method uses an additional resonance 45^0 -pulse after the preparation period of the standard MQ NMR experiment in solids. Many-spin clusters and correlations are created faster in such experiments than in the usual MQ NMR experiments and can be used for the investigation of many-spin dynamics of nuclear spins in solids.Comment: 11 pages, 3 figures. accepted for publication in Physical Review

    Energetics of Quantum Antidot States in Quantum Hall Regime

    Full text link
    We report experiments on the energy structure of antidot-bound states. By measuring resonant tunneling line widths as function of temperature, we determine the coupling to the remote global gate voltage and find that the effects of interelectron interaction dominate. Within a simple model, we also determine the energy spacing of the antidot bound states, self consistent edge electric field, and edge excitation drift velocity.Comment: 4 pages, RevTex, 5 Postscript figure

    Measuring topology in a laser-coupled honeycomb lattice: From Chern insulators to topological semi-metals

    Get PDF
    Ultracold fermions trapped in a honeycomb optical lattice constitute a versatile setup to experimentally realize the Haldane model [Phys. Rev. Lett. 61, 2015 (1988)]. In this system, a non-uniform synthetic magnetic flux can be engineered through laser-induced methods, explicitly breaking time-reversal symmetry. This potentially opens a bulk gap in the energy spectrum, which is associated with a non-trivial topological order, i.e., a non-zero Chern number. In this work, we consider the possibility of producing and identifying such a robust Chern insulator in the laser-coupled honeycomb lattice. We explore a large parameter space spanned by experimentally controllable parameters and obtain a variety of phase diagrams, clearly identifying the accessible topologically non-trivial regimes. We discuss the signatures of Chern insulators in cold-atom systems, considering available detection methods. We also highlight the existence of topological semi-metals in this system, which are gapless phases characterized by non-zero winding numbers, not present in Haldane's original model.Comment: 30 pages, 12 figures, 4 Appendice
    corecore