2,666 research outputs found

    Ripples and Shear Bands in Plowed Granular Media

    Full text link
    Monodisperse packings of dry, air-fluidized granular media typically exist between volume fractions from Φ\Phi= 0.585 to 0.64. We demonstrate that the dynamics of granular drag are sensitive to volume fraction Φ\Phi and their exists a transition in the drag force and material deformation from smooth to oscillatory at a critical volume fraction Φc=0.605\Phi_{c}=0.605. By dragging a submerged steel plate (3.81 cm width, 6.98 cm depth) through 300μm300 \mu m glass beads prepared at volume fractions between 0.585 to 0.635 we find that below Φc\Phi_{c} the media deformation is smooth and non-localized while above Φc\Phi_{c} media fails along distinct shear bands. At high Φ\Phi the generation of these shear bands is periodic resulting in the ripples on the surface. Work funded by The Burroughs Wellcome Fund and the Army Research Lab MAST CT

    A Terradynamics of Legged Locomotion on Granular Media

    Get PDF
    The theories of aero- and hydrodynamics predict animal movement and device design in air and water through the computation of lift, drag, and thrust forces. Although models of terrestrial legged locomotion have focused on interactions with solid ground, many animals move on substrates that flow in response to intrusion. However, locomotor-ground interaction models on such flowable ground are often unavailable. We developed a force model for arbitrarily-shaped legs and bodies moving freely in granular media, and used this "terradynamics" to predict a small legged robot's locomotion on granular media using various leg shapes and stride frequencies. Our study reveals a complex but generic dependence of stresses in granular media on intruder depth, orientation, and movement direction and gives insight into the effects of leg morphology and kinematics on movement

    Investigating Drift Mobilities in Cadmium Telluride Solar Cells

    Get PDF
    See Abstract within Capstone documen

    Surprising simplicity in the modeling of dynamic granular intrusion

    Full text link
    Granular intrusions, such as dynamic impact or wheel locomotion, are complex multiphase phenomena where the grains exhibit solid-like and fluid-like characteristics together with an ejected gas-like phase. Despite decades of modeling efforts, a unified description of the physics in such intrusions is as yet unknown. Here we show that a continuum model based on the simple notions of frictional flow and tension-free separation describes complex granular intrusions near free surfaces. This model captures dynamics in a variety of experiments including wheel locomotion, plate intrusions, and running legged robots. The model reveals that three effects (a static contribution and two dynamic ones) primarily give rise to intrusion forces in such scenarios. Identification of these effects enables the development of a further reduced-order technique (Dynamic Resistive Force Theory) for rapid modeling of granular locomotion of arbitrarily shaped intruders. The continuum-motivated strategy we propose for identifying physical mechanisms and corresponding reduced-order relations has potential use for a variety of other materials.Comment: 41 pages including supplementary document, 10 figures, and 8 vide

    Intelligent Word Embeddings of Free-Text Radiology Reports

    Full text link
    Radiology reports are a rich resource for advancing deep learning applications in medicine by leveraging the large volume of data continuously being updated, integrated, and shared. However, there are significant challenges as well, largely due to the ambiguity and subtlety of natural language. We propose a hybrid strategy that combines semantic-dictionary mapping and word2vec modeling for creating dense vector embeddings of free-text radiology reports. Our method leverages the benefits of both semantic-dictionary mapping as well as unsupervised learning. Using the vector representation, we automatically classify the radiology reports into three classes denoting confidence in the diagnosis of intracranial hemorrhage by the interpreting radiologist. We performed experiments with varying hyperparameter settings of the word embeddings and a range of different classifiers. Best performance achieved was a weighted precision of 88% and weighted recall of 90%. Our work offers the potential to leverage unstructured electronic health record data by allowing direct analysis of narrative clinical notes.Comment: AMIA Annual Symposium 201

    Novel synthesis of 2-methyl-3, 4, 5-trichloropyrimidine

    Get PDF
    A one-step synthesis of the heterocycle 2-methyl-3,4,5-trichloropyrimidine by the cycloaddition of hexachloropropene with acetamidine hydrochloride in methanolic NaOH was attempted. The product was dark amber oil. A by-product of this reaction was sodium chloride. The proposed reaction was expected to proceed via a SN2 nucleophilic displacement of three chlorine atoms on hexachloropropene by acetamidine, the nucleophile. The proposed driving force for this transformation is the lone pair of electrons on the amidine nitrogen along with the electron withdrawing ability of three chlorines on hexachloropropene which induces a partial positive charge on the carbon. It is proposed that the chlorine atoms became good leaving groups based upon literature precedent presented in the introduction. The chlorine atoms act as good leaving groups via SN2 nucleophilic displacement by the nitrogen atoms. This thesis discusses a synthetic strategy for the possible synthesis of 2-methyl-3,4,5-trichloropyrimidine and its analogs
    • …
    corecore