66 research outputs found

    Invariance of Charge of Laughlin Quasiparticles

    Full text link
    A Quantum Antidot electrometer has been used in the first direct observation of the fractionally quantized electric charge. In this paper we report experiments performed on the integer i = 1, 2 and fractional f = 1/3 quantum Hall plateaus extending over a filling factor range of at least 27%. We find the charge of the Laughlin quasiparticles to be invariantly e/3, with standard deviation of 1.2% and absolute accuracy of 4%, independent of filling, tunneling current, and temperature.Comment: 4 pages, 5 fig

    Formation of an Edge Striped Phase in Fractional Quantum Hall Systems

    Full text link
    We have performed an exact diagonalization study of up to N=12 interacting electrons on a disk at filling ν=1/3\nu={1/3} for both Coulomb and V1V_1 short-range interaction for which Laughlin wave function is the exact solution. For Coulomb interaction and N≥10N\geq 10 we find persistent radial oscillations in electron density, which are not captured by the Laughlin wave function. Our results srongly suggest formation of a chiral edge striped phase in quantum Hall systems. The amplitude of the charge density oscillations decays slowly, perhaps as a square root of the distance from the edge; thus the spectrum of edge excitations is likely to be affected.Comment: 4 pages, 3 Figs. include

    Fractional Quantum Hall States in Low-Zeeman-Energy Limit

    Full text link
    We investigate the spectrum of interacting electrons at arbitrary filling factors in the limit of vanishing Zeeman splitting. The composite fermion theory successfully explains the low-energy spectrum {\em provided the composite fermions are treated as hard-core}.Comment: 12 pages, revte

    Hund's Rule for Composite Fermions

    Full text link
    We consider the ``fractional quantum Hall atom" in the vanishing Zeeman energy limit, and investigate the validity of Hund's maximum-spin rule for interacting electrons in various Landau levels. While it is not valid for {\em electrons} in the lowest Landau level, there are regions of filling factors where it predicts the ground state spin correctly {\em provided it is applied to composite fermions}. The composite fermion theory also reveals a ``self-similar" structure in the filling factor range 4/3>ν>2/34/3>\nu>2/3.Comment: 10 pages, revte

    Integer quantum Hall effect for hard-core bosons and a failure of bosonic Chern-Simons mean-field theories for electrons at half-filled Landau level

    Get PDF
    Field-theoretical methods have been shown to be useful in constructing simple effective theories for two-dimensional (2D) systems. These effective theories are usually studied by perturbing around a mean-field approximation, so the question whether such an approximation is meaningful arises immediately. We here study 2D interacting electrons in a half-filled Landau level mapped onto interacting hard-core bosons in a magnetic field. We argue that an interacting hard-core boson system in a uniform external field such that there is one flux quantum per particle (unit filling) exhibits an integer quantum Hall effect. As a consequence, the mean-field approximation for mapping electrons at half-filling to a boson system at integer filling fails.Comment: 13 pages latex with revtex. To be published in Phys. Rev.

    Hamiltonian theory of gaps, masses and polarization in quantum Hall states: full disclosure

    Full text link
    I furnish details of the hamiltonian theory of the FQHE developed with Murthy for the infrared, which I subsequently extended to all distances and apply it to Jain fractions \nu = p/(2ps + 1). The explicit operator description in terms of the CF allows one to answer quantitative and qualitative issues, some of which cannot even be posed otherwise. I compute activation gaps for several potentials, exhibit their particle hole symmetry, the profiles of charge density in states with a quasiparticles or hole, (all in closed form) and compare to results from trial wavefunctions and exact diagonalization. The Hartree-Fock approximation is used since much of the nonperturbative physics is built in at tree level. I compare the gaps to experiment and comment on the rough equality of normalized masses near half and quarter filling. I compute the critical fields at which the Hall system will jump from one quantized value of polarization to another, and the polarization and relaxation rates for half filling as a function of temperature and propose a Korringa like law. After providing some plausibility arguments, I explore the possibility of describing several magnetic phenomena in dirty systems with an effective potential, by extracting a free parameter describing the potential from one data point and then using it to predict all the others from that sample. This works to the accuracy typical of this theory (10 -20 percent). I explain why the CF behaves like free particle in some magnetic experiments when it is not, what exactly the CF is made of, what one means by its dipole moment, and how the comparison of theory to experiment must be modified to fit the peculiarities of the quantized Hall problem

    Fermion Chern Simons Theory of Hierarchical Fractional Quantum Hall States

    Full text link
    We present an effective Chern-Simons theory for the bulk fully polarized fractional quantum Hall (FQH) hierarchical states constructed as daughters of general states of the Jain series, {\it i. e.} as FQH states of the quasi-particles or quasi-holes of Jain states. We discuss the stability of these new states and present two reasonable stability criteria. We discuss the theory of their edge states which follows naturally from this bulk theory. We construct the operators that create elementary excitations, and discuss the scaling behavior of the tunneling conductance in different situations. Under the assumption that the edge states of these fully polarized hierarchical states are unreconstructed and unresolved, we find that the differential conductance GG for tunneling of electrons from a Fermi liquid into {\em any} hierarchical Jain FQH states has the scaling behavior G∼VαG\sim V^\alpha with the universal exponent α=1/ν\alpha=1/\nu, where ν\nu is the filling fraction of the hierarchical state. Finally, we explore alternative ways of constructing FQH states with the same filling fractions as partially polarized states, and conclude that this is not possible within our approach.Comment: 10 pages, 50 references, no figures; formerly known as "Composite Fermions: The Next Generation(s)" (title changed by the PRB thought police). This version has more references and a discussion of the stability of the new states. Published version. One erroneous reference is correcte

    Measurements of the Composite Fermion masses from the spin polarization of 2-D electrons in the region 1<ν<21<\nu<2

    Full text link
    Measurements of the reflectivity of a 2-D electron gas are used to deduce the polarization of the Composite Fermion hole system formed for Landau level occupancies in the regime 1<\nu<2. The measurements are consistent with the formation of a mixed spin CF system and allow the density of states or `polarization' effective mass of the CF holes to be determined. The mass values at \nu=3/2 are found to be ~1.9m_{e} for electron densities of 4.4 x 10^{11} cm^{-2}, which is significantly larger than those found from measurements of the energy gaps at finite values of effective magnetic field.Comment: 4 pages, 3 fig

    Partially spin polarized quantum Hall effect in the filling factor range 1/3 < nu < 2/5

    Full text link
    The residual interaction between composite fermions (CFs) can express itself through higher order fractional Hall effect. With the help of diagonalization in a truncated composite fermion basis of low-energy many-body states, we predict that quantum Hall effect with partial spin polarization is possible at several fractions between ν=1/3\nu=1/3 and ν=2/5\nu=2/5. The estimated excitation gaps are approximately two orders of magnitude smaller than the gap at ν=1/3\nu=1/3, confirming that the inter-CF interaction is extremely weak in higher CF levels.Comment: 4 pages, 3 figure

    Hamiltonian Theory of the Composite Fermion Wigner Crystal

    Full text link
    Experimental results indicating the existence of the high magnetic field Wigner Crystal have been available for a number of years. While variational wavefunctions have demonstrated the instability of the Laughlin liquid to a Wigner Crystal at sufficiently small filling, calculations of the excitation gaps have been hampered by the strong correlations. Recently a new Hamiltonian formulation of the fractional quantum Hall problem has been developed. In this work we extend the Hamiltonian approach to include states of nonuniform density, and use it to compute the excitation gaps of the Wigner Crystal states. We find that the Wigner Crystal states near ν=1/5\nu=1/5 are quantitatively well described as crystals of Composite Fermions with four vortices attached. Predictions for gaps and the shear modulus of the crystal are presented, and found to be in reasonable agreement with experiments.Comment: 41 page, 6 figures, 3 table
    • …
    corecore