15 research outputs found

    Understanding morphological variation in the extant koala as a framework for identification of species boundaries in extinct koalas (Phascolarctidae; Marsupialia)

    Get PDF
    We document morphological variation (both geographical and sexual) in the dentition of the extant koala, Phascolarctos cinereus, in order to facilitate discrimination of species boundaries in extinct phascolarctids. Considerable variation is evident in dental structures previously used to diagnose several phascolarctid fossil species. Consistent patterns of morphological variation are not evident between sexes or geographic regions, with variation as great between samples as within them. Metric variation is evident between the sexes in upper molar dimensions with Victorian (southern) males significantly larger than Victorian females, although this is not reflected in lower molar dimensions or in the Queensland (northern) sample. Male koalas from southern populations generally display significantly larger molars than their northern counterparts; however this trend is not evident in female upper molar dimensions. In both males and females, some, but not all, lower molar dimensions are larger in southern populations than northern. In light of these results, a systematic revision of species of Litokoala suggests L. dicktedfordi' is a junior synonym of L. kutjamarpensis, and the poorly known L. thurmerae is regarded to be a nomen dubium. Further, we describe a partial cranium of a new species of koala from Early Miocene sediments in the Riversleigh World Heritage Area, northern Australia. Litokoala dicksmithi sp. nov. is the fifth koala species recorded from the diverse rainforest assemblages of Riversleigh and the third species referred to the Oligo-Miocene genus Litokoala. Aspects of cranial morphology, including a shortened robust rostrum and broad, irregular nasal aperture, confirm placement of Litokoala as sister taxon to the modern genus Phascolarctos. Relatively large orbits and small body size suggest the possibility that L. dicksmithi was nocturnal, had enhanced visual acuity, and was a more agile arboreal species than the relatively sedentary extant koala

    Heliolitid corals and their competitors: a case study from the Wellin patch reefs, Middle Devonian, Belgium

    No full text
    peer reviewedWellin patch reefs are small Upper Eifelian build?ups within the fine?grained argillaceous limestone of the Hanonet Formation. Whereas the reefs themselves are not well exposed, their fossil assemblage is accessible in the hills near the town of Wellin, approximately 40xA0km SE of Dinant in Belgium. It is especially rich in massive stromatoporoids, heliolitids and other tabulate corals. They exhibit predominantly domical and bulbous morphologies. This paper focuses primarily on the palaeoautoecology of the heliolitid corals and their relationships with other organisms. Cases of mutual overgrowth between heliolitids, other corals and stromatoporids suggest a high degree of competition for space on the reefs, possibly related to the scarcity of hard substrates. Coral and stromatoporoid growth forms, as well as the prevalence of micritic matrix, point to a relatively low energy environment. However, abundant growth interruption surfaces, sediment intercalations and rejuvenations of corals suggest episodically increased hydrodynamic regime and sediment supply. It is inferred that the patch reefs developed in a relatively shallow environment, where the reefal assemblage was regularly affected by storms. Heliolitids exhibited high sediment tolerance and relied on passive sediment removal for survival. They also could regenerate effectively and commonly overgrew their epibionts, after the colony’s growth was hampered by the sediment. This is recorded in extremely abundant growth interruption surfaces, which allow the analysis of the impact of sediment influxes on the heliolitid corals. ? 2021 Lethaia Foundation. Published by John Wiley & Sons Lt

    The extent of the pterosaur flight membrane

    No full text
    The shape and extent of the membranous brachioptagium in pterosaurs remains a controversial topic for those attempting to determine the aerodynamic performance of the first vertebrate fliers. Various arguments in favour of the trailing edge terminating against either the torso or hip, the femur, the ankle, or different locations for various taxa, has resulted in sev− eral published reconstructions. Uncertainty over the correct model is detrimental to both aerodynamic and palaeoecologi− cal studies that are forced to simultaneously consider multiple and highly variable configurations for individual taxa. A review of relevant pterosaur specimens with preserved soft tissues or impressions of the wing membrane, however, strongly suggests that the trailing edge of the wing extended down to the lower leg or ankle in all specimens where the brachiopatagium is completely preserved. This configuration is seen across a phylogenetically broad range of pterosaurs and is thus likely to have been universally present throughout the Pterosauria. Support for opposing hypotheses where the trailing edge terminates against the body, hip, or knee are based on several specimens where the wing membrane is either incomplete or has undergone post−mortem contraction. An ankle attachment does not rule out a high aspect ratio wing as the curvature of the trailing edge and the ratio of the fore to hind limbs also play a major role in determining the final shape of the membrane
    corecore