70 research outputs found

    Deregulation of Rab and Rab Effector Genes in Bladder Cancer

    Get PDF
    Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer

    An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes

    Get PDF
    Cancers are characterized by non-random chromosome copy number alterations that presumably contain oncogenes and tumor-suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28 recurrent chromosomal alterations in ependymoma. Through a series of mouse models, we validate eight new ependymoma oncogenes and ten new ependymoma TSGs that converge on a small number of cell functions, including vesicle trafficking, DNA modification and cholesterol biosynthesis, identifying these as potential new therapeutic targets.We are grateful to F.B. Gertler (Massachusetts Institute of Technology) and S. Gupton (University of North Carolina) for the generous gift of the VAMP7-phlorin construct and the staffs of the Hartwell Center for Bioinformatics and Biotechnology, the Small Animal Imaging Center, the Animal Resources Center, the Cell and Tissue Imaging Center, and the Flow Cytometry and Cell Sorting Shared Resource at St. Jude Children's Research Hospital for technical assistance. This work was supported by grants from the US National Institutes of Health (R01CA129541, P01CA96832 and P30CA021765, R.J.G.), by the Collaborative Ependymoma Research Network (CERN) and by the American Lebanese Syrian Associated Charities (ALSAC)

    Rab11-FIP1C and Rab14 Direct Plasma Membrane Sorting and Particle Incorporation of the HIV-1 Envelope Glycoprotein Complex

    Get PDF
    The incorporation of the envelope glycoprotein complex (Env) onto the developing particle is a crucial step in the HIV-1 lifecycle. The long cytoplasmic tail (CT) of Env is required for the incorporation of Env onto HIV particles in T cells and macrophages. Here we identify the Rab11a-FIP1C/RCP protein as an essential cofactor for HIV-1 Env incorporation onto particles in relevant human cells. Depletion of FIP1C reduced Env incorporation in a cytoplasmic tail-dependent manner, and was rescued by replenishment of FIP1C. FIP1C was redistributed out of the endosomal recycling complex to the plasma membrane by wild type Env protein but not by CT-truncated Env. Rab14 was required for HIV-1 Env incorporation, and FIP1C mutants incapable of binding Rab14 failed to rescue Env incorporation. Expression of FIP1C and Rab14 led to an enhancement of Env incorporation, indicating that these trafficking factors are normally limiting for CT-dependent Env incorporation onto particles. These findings support a model for HIV-1 Env incorporation in which specific targeting to the particle assembly microdomain on the plasma membrane is mediated by FIP1C and Rab14. © 2013 Qi et al.Link_to_subscribed_fulltex

    The “HEADS AT” Training Tool for Residents

    No full text
    corecore