12,213 research outputs found
An Empirical Study of Finding Approximate Equilibria in Bimatrix Games
While there have been a number of studies about the efficacy of methods to
find exact Nash equilibria in bimatrix games, there has been little empirical
work on finding approximate Nash equilibria. Here we provide such a study that
compares a number of approximation methods and exact methods. In particular, we
explore the trade-off between the quality of approximate equilibrium and the
required running time to find one. We found that the existing library GAMUT,
which has been the de facto standard that has been used to test exact methods,
is insufficient as a test bed for approximation methods since many of its games
have pure equilibria or other easy-to-find good approximate equilibria. We
extend the breadth and depth of our study by including new interesting families
of bimatrix games, and studying bimatrix games upto size .
Finally, we provide new close-to-worst-case examples for the best-performing
algorithms for finding approximate Nash equilibria
General relativity on a null surface: Hamiltonian formulation in the teleparallel geometry
The Hamiltonian formulation of general relativity on a null surface is
established in the teleparallel geometry. No particular gauge conditons on the
tetrads are imposed, such as the time gauge condition. By means of a 3+1
decomposition the resulting Hamiltonian arises as a completely constrained
system. However, it is structurally different from the the standard
Arnowitt-Deser-Misner (ADM) type formulation. In this geometrical framework the
basic field quantities are tetrads that transform under the global SO(3,1) and
the torsion tensor.Comment: 15 pages, Latex, no figures, to appear in the Gen. Rel. Gra
Adaptive intelligence applied to numerical optimisation
The article presents modification strategies theoretical comparison and experimental results achieved by adaptive heuristics applied to numerical optimisation of several non-constraint test functions. The aims of the study are to identify and compare how adaptive search heuristics behave within heterogeneous search space without retuning of the search parameters. The achieved results are summarised and analysed, which could be used for comparison to other methods and further investigation
Differential Forms and Wave Equations for General Relativity
Recently, Choquet-Bruhat and York and Abrahams, Anderson, Choquet-Bruhat, and
York (AACY) have cast the 3+1 evolution equations of general relativity in
gauge-covariant and causal ``first-order symmetric hyperbolic form,'' thereby
cleanly separating physical from gauge degrees of freedom in the Cauchy problem
for general relativity. A key ingredient in their construction is a certain
wave equation which governs the light-speed propagation of the extrinsic
curvature tensor. Along a similar line, we construct a related wave equation
which, as the key equation in a system, describes vacuum general relativity.
Whereas the approach of AACY is based on tensor-index methods, the present
formulation is written solely in the language of differential forms. Our
approach starts with Sparling's tetrad-dependent differential forms, and our
wave equation governs the propagation of Sparling's 2-form, which in the
``time-gauge'' is built linearly from the ``extrinsic curvature 1-form.'' The
tensor-index version of our wave equation describes the propagation of (what is
essentially) the Arnowitt-Deser-Misner gravitational momentum.Comment: REVTeX, 26 pages, no figures, 1 macr
The Spin Holonomy Group In General Relativity
It has recently been shown by Goldberg et al that the holonomy group of the
chiral spin-connection is preserved under time evolution in vacuum general
relativity. Here, the underlying reason for the time-independence of the
holonomy group is traced to the self-duality of the curvature 2-form for an
Einstein space. This observation reveals that the holonomy group is
time-independent not only in vacuum, but also in the presence of a cosmological
constant. It also shows that once matter is coupled to gravity, the
"conservation of holonomy" is lost. When the fundamental group of space is
non-trivial, the holonomy group need not be connected. For each homotopy class
of loops, the holonomies comprise a coset of the full holonomy group modulo its
connected component. These cosets are also time-independent. All possible
holonomy groups that can arise are classified, and examples are given of
connections with these holonomy groups. The classification of local and global
solutions with given holonomy groups is discussed.Comment: 21 page
Finding Connected Dense -Subgraphs
Given a connected graph on vertices and a positive integer ,
a subgraph of on vertices is called a -subgraph in . We design
combinatorial approximation algorithms for finding a connected -subgraph in
such that its density is at least a factor
of the density of the densest -subgraph
in (which is not necessarily connected). These particularly provide the
first non-trivial approximations for the densest connected -subgraph problem
on general graphs
Unit Interval Editing is Fixed-Parameter Tractable
Given a graph~ and integers , , and~, the unit interval
editing problem asks whether can be transformed into a unit interval graph
by at most vertex deletions, edge deletions, and edge
additions. We give an algorithm solving this problem in time , where , and denote respectively
the numbers of vertices and edges of . Therefore, it is fixed-parameter
tractable parameterized by the total number of allowed operations.
Our algorithm implies the fixed-parameter tractability of the unit interval
edge deletion problem, for which we also present a more efficient algorithm
running in time . Another result is an -time algorithm for the unit interval vertex deletion problem,
significantly improving the algorithm of van 't Hof and Villanger, which runs
in time .Comment: An extended abstract of this paper has appeared in the proceedings of
ICALP 2015. Update: The proof of Lemma 4.2 has been completely rewritten; an
appendix is provided for a brief overview of related graph classe
A Multi-objective Exploratory Procedure for Regression Model Selection
Variable selection is recognized as one of the most critical steps in
statistical modeling. The problems encountered in engineering and social
sciences are commonly characterized by over-abundance of explanatory variables,
non-linearities and unknown interdependencies between the regressors. An added
difficulty is that the analysts may have little or no prior knowledge on the
relative importance of the variables. To provide a robust method for model
selection, this paper introduces the Multi-objective Genetic Algorithm for
Variable Selection (MOGA-VS) that provides the user with an optimal set of
regression models for a given data-set. The algorithm considers the regression
problem as a two objective task, and explores the Pareto-optimal (best subset)
models by preferring those models over the other which have less number of
regression coefficients and better goodness of fit. The model exploration can
be performed based on in-sample or generalization error minimization. The model
selection is proposed to be performed in two steps. First, we generate the
frontier of Pareto-optimal regression models by eliminating the dominated
models without any user intervention. Second, a decision making process is
executed which allows the user to choose the most preferred model using
visualisations and simple metrics. The method has been evaluated on a recently
published real dataset on Communities and Crime within United States.Comment: in Journal of Computational and Graphical Statistics, Vol. 24, Iss.
1, 201
- âŠ