357 research outputs found
Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N
The development of a mm-spatial-resolution, resonant-response detector based
on a micrometric glass capillary array filled with liquid scintillator is
described. This detector was developed for Gamma Resonance Absorption (GRA) in
14N. GRA is an automatic-decision radiographic screening technique that
combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with
very good sensitivity and specificity to nitrogenous explosives. Detailed
simulation of the detector response to electrons and protons generated by the
9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a
mixed gamma-ray and neutron source. Towards this, a prototype capillary
detector was assembled, including the associated filling and readout systems.
Simulations and experimental results indeed show that proton tracks are
distinguishable from electron tracks at relevant energies, on the basis of a
criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure
Time and position sensitive single photon detector for scintillator read-out
We have developed a photon counting detector system for combined neutron and
gamma radiography which can determine position, time and intensity of a
secondary photon flash created by a high-energy particle or photon within a
scintillator screen. The system is based on a micro-channel plate
photomultiplier concept utilizing image charge coupling to a position- and
time-sensitive read-out anode placed outside the vacuum tube in air, aided by a
standard photomultiplier and very fast pulse-height analyzing electronics. Due
to the low dead time of all system components it can cope with the high
throughput demands of a proposed combined fast neutron and dual discrete energy
gamma radiography method (FNDDER). We show tests with different types of
delay-line read-out anodes and present a novel pulse-height-to-time converter
circuit with its potential to discriminate gamma energies for the projected
FNDDER devices for an automated cargo container inspection system (ACCIS).Comment: Proceedings of FNDA 201
Nonperturbative bound on high multiplicity cross sections in phi^4_3 from lattice simulation
We have looked for evidence of large cross sections at large multiplicities
in weakly coupled scalar field theory in three dimensions. We use spectral
function sum rules to derive bounds on total cross sections where the sum can
be expresed in terms of a quantity which can be measured by Monte Carlo
simulation in Euclidean space. We find that high multiplicity cross sections
remain small for energies and multiplicities for which large effects had been
suggested.Comment: 23 pages, revtex, seven eps figures revised version: typos corrected,
some rewriting of discusion, same resul
Mechanism of polarization of Listeria monocytogenes surface protein ActA
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActAâRFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth
Expansions for the Bollobas-Riordan polynomial of separable ribbon graphs
We define 2-decompositions of ribbon graphs, which generalise 2-sums and
tensor products of graphs. We give formulae for the Bollobas-Riordan polynomial
of such a 2-decomposition, and derive the classical Brylawski formula for the
Tutte polynomial of a tensor product as a (very) special case. This study was
initially motivated from knot theory, and we include an application of our
formulae to mutation in knot diagrams.Comment: Version 2 has minor changes. To appear in Annals of Combinatoric
Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System
An air cargo inspection system combining two nuclear reaction based
techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy
Gamma Radiography is currently being developed. This system is expected to
allow detection of standard and improvised explosives as well as special
nuclear materials. An important aspect for the applicability of nuclear
techniques in an airport inspection facility is the inventory and lifetimes of
radioactive isotopes produced by the neutron and gamma radiation inside the
cargo, as well as the dose delivered by these isotopes to people in contact
with the cargo during and following the interrogation procedure. Using MCNPX
and CINDER90 we have calculated the activation levels for several typical
inspection scenarios. One example is the activation of various metal samples
embedded in a cotton-filled container. To validate the simulation results, a
benchmark experiment was performed, in which metal samples were activated by
fast-neutrons in a water-filled glass jar. The induced activity was determined
by analyzing the gamma spectra. Based on the calculated radioactive inventory
in the container, the dose levels due to the induced gamma radiation were
calculated at several distances from the container and in relevant time windows
after the irradiation, in order to evaluate the radiation exposure of the cargo
handling staff, air crew and passengers during flight. The possibility of
remanent long-lived radioactive inventory after cargo is delivered to the
client is also of concern and was evaluated.Comment: Proceedings of FNDA 201
Curved Tails in Polymerization-Based Bacterial Motility
The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a
visually striking signature of actin polymerization-based motility. Similar
actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae,
the Vaccinia virus, and vesicles and microspheres in related in vitro systems.
We show that the torque required to produce the curvature in the tail can arise
from randomly placed actin filaments pushing the bacterium or particle. We find
that the curvature magnitude determines the number of actively pushing
filaments, independent of viscosity and of the molecular details of force
generation. The variation of the curvature with time can be used to infer the
dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2
Black Hole Chromosphere at the LHC
If the scale of quantum gravity is near a TeV, black holes will be copiously
produced at the LHC. In this work we study the main properties of the light
descendants of these black holes. We show that the emitted partons are closely
spaced outside the horizon, and hence they do not fragment into hadrons in
vacuum but more likely into a kind of quark-gluon plasma. Consequently, the
thermal emission occurs far from the horizon, at a temperature characteristic
of the QCD scale. We analyze the energy spectrum of the particles emerging from
the "chromosphere", and find that the hard hadronic jets are almost entirely
suppressed. They are replaced by an isotropic distribution of soft photons and
hadrons, with hundreds of particles in the GeV range. This provides a new
distinctive signature for black hole events at LHC.Comment: Incorporates changes made for the version to be published in Phys.
Rev. D. Additional details provided on the effect of the chromosphere in
cosmic ray shower
Phenomenology of Randall-Sundrum Black Holes
We explore the phenomenology of microscopic black holes in the
Randall-Sundrum (RS) model. We consider the canonical framework in which both
gauge and matter fields are confined to the brane and only gravity spills into
the extra dimension. The model is characterized by two parameters, the mass of
the first massive graviton , and the curvature of the RS
anti-de Sitter space. We compute the sensitivity of present and future cosmic
ray experiments to various regions of and and compare with that
of Runs I and II at the Tevatron. As part of our phenomenological analysis, we
examine constraints placed on by AdS/CFT considerations.Comment: Version to appear in Physical Review D; contains additional analysis
on sensitivity of OW
Black Holes from Cosmic Rays: Probes of Extra Dimensions and New Limits on TeV-Scale Gravity
If extra spacetime dimensions and low-scale gravity exist, black holes will
be produced in observable collisions of elementary particles. For the next
several years, ultra-high energy cosmic rays provide the most promising window
on this phenomenon. In particular, cosmic neutrinos can produce black holes
deep in the Earth's atmosphere, leading to quasi-horizontal giant air showers.
We determine the sensitivity of cosmic ray detectors to black hole production
and compare the results to other probes of extra dimensions. With n \ge 4 extra
dimensions, current bounds on deeply penetrating showers from AGASA already
provide the most stringent bound on low-scale gravity, requiring a fundamental
Planck scale M_D > 1.3 - 1.8 TeV. The Auger Observatory will probe M_D as large
as 4 TeV and may observe on the order of a hundred black holes in 5 years. We
also consider the implications of angular momentum and possible exponentially
suppressed parton cross sections; including these effects, large black hole
rates are still possible. Finally, we demonstrate that even if only a few black
hole events are observed, a standard model interpretation may be excluded by
comparison with Earth-skimming neutrino rates.Comment: 30 pages, 18 figures; v2: discussion of gravitational infall, AGASA
and Fly's Eye comparison added; v3: Earth-skimming results modified and
strengthened, published versio
- âŠ